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Abstract
Linking annual tree growth with remotely-sensed terrestrial vegetation indices provides a basis for
using tree rings as proxies for ecosystem primary productivity over large spatial and long
temporal scales. In contrast with most previous tree ring/remote sensing studies that have
focused on temperature-limited boreal and taiga environments, here we compare the normalized
difference vegetation index (NDVI) with a network of Pinus brutia tree ring width chronologies
collected along ecological gradients in semiarid Cyprus, where both radial tree growth and
broader vegetation activity are controlled by drought. We find that the interaction between
precipitation, elevation, and land-cover type generate a relationship between radial tree growth
and NDVI. While tree ring chronologies at higher-elevation forested sites do not exhibit climate-
driven linkages with NDVI, chronologies at lower-elevation dry sites are strongly correlated with
NDVI during the winter precipitation season. At lower-elevation sites, land cover is dominated
by grasslands and shrublands and tree ring widths operate as a proxy for ecosystem-scale
vegetation activity. Tree rings can therefore be used to reconstruct productivity in water-limited
grasslands and shrublands, where future drought stress is expected to alter the global carbon
cycle, biodiversity, and ecosystem functioning in the 21st century.
1. Introduction

There is extensive scientific debate regarding the
direction and magnitude of recent changes in
ecosystem primary productivity across global biomes
(Guay et al 2014, Poulter et al 2014), but knowledge of
long-term, multidecadal to centennial scale vegetation
activity fluctuations and their causes is limited
(Tielbörger et al 2014). Global semiarid shrublands
and grasslands are major drivers of interannual
variability in the global carbon cycle, and experience
critical loss of biodiversity and ecosystem functioning,
plant community restructuring, and water cycle
changes following drought-induced vegetation die-
off events (Ahlström et al 2015, Breshears et al 2005,
Kunstler et al 2006, Lloret et al 2016, Poulter et al 2014,
Royer et al 2011). Understanding the long-term
response and resilience of these ecosystems to drought
© 2017 The Author(s). Published by IOP Publishing Ltd
and aridity is particularly important in the Mediterra-
nean region, a transitional climate zone that is
especially vulnerable to precipitation declines, increas-
ing temperatures, and a greater frequency of droughts
and heat waves, as a result of anthropogenic climate
change (Hoerling et al 2012, IPCC 2013).

An emerging body of research attempts to relate
remotely-sensed vegetation activity estimates to tree
ring variables (including ring width, density, and
stable isotopes), for the purpose of using tree rings as
both in-situ indicators and long-term paleoenviron-
mental proxies of primary productivity (Vicente-
Serrano et al 2016). The latter application would allow
for examination of long-term vegetation activity and
climate interactions and provide a fuller context for
evaluating modern ecosystem, productivity, and
carbon cycle shifts. In northern high latitude forests,
radial tree growth and forest canopy reflectance have
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Table 1. Tree ring sample site and chronology information.

Site Latitude (°N) Longitude (°E) Elevation (m asl) Time span No. of trees/cores

AMB 34.94 32.92 1489 1552–2010 36/72

STP 35.02 32.63 1059 1741–2002 20/38

AMF 35.00 32.63 859 1718–2010 21/42

HIK 35.30 33.26 795 1791–2012 22/44

ALK 35.28 33.55 489 1898–2012 22/41

DEG 35.26 33.44 243 1947–2012 20/39

YEK 35.49 34.19 231 1915–2012 20/38

HAO 35.28 33.02 181 1924–2012 20/39
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been linked based on their common sensitivity to
seasonal temperature, yet it remains unclear if and
how canopy status and xylogenesis are physiologically
connected (Beck et al 2011, 2013, Berner et al 2011,
Bunn et al 2013, D’Arrigo et al 2000). In semiarid
systems, both annual radial tree growth and broader
vegetation activity are mainly controlled by moisture
availability (Vicente-Serrano 2007, Vicente-Serrano
et al 2013) and there is evidence of linkages between
tree rings and vegetation indices in these settings
(Leavitt et al 2008, Pasho and Alla, 2015, Poulter et al
2013, Vicente-Serrano et al 2013). A longer-term
perspective on the response of productivity to drought
could allow for a better understanding of ecosystem
resistance, resilience, and vulnerability to mean state
changes and extreme drought events (Vicente-Serrano
et al 2013). The goal of this study was to identify
topoclimatic, land cover, and phenological character-
istics that promote a relationship between radial tree
growth and ecosystem productivity, as measured by
the normalized difference vegetation index (NDVI), in
a semiarid environment. We analyze a network of
Pinus brutia (Ten.) trees growing across an elevational
gradient in Cyprus, where the species is distributed
across a large range of environments and elevations
and where its growth is often moisture-limited (Griggs
et al 2014, Touchan et al 2014a, 2014b, 2016).
2. Study area

Cyprus experiences a typical Mediterranean climate
characterized by hot dry summers and mild wet
winters. During summer, subsidence corresponds with
a northward shift of the subtropical high and Persian
trough, and thunderstorms deliver less than 5% of the
total annual rainfall (Price et al 1999). Small, unstable
low pressure systems resulting from the continental
anticyclone of Eurasia and persistent low-pressure belt
over north Africa dominate during winter, delivering
about 60% of the total annual precipitation between
December and February. Spring and autumn are short
with highly variable temperature and precipitation
(Price et al 1999). The island’s topography is
dominated in the west by the Troodos massif
(maximum elevation 1951 m asl) and in the northeast
by the Kyrenia range (maximum elevation 1000 m asl)
(Price et al 1999). The higher western ranges receive
2

greater precipitation, and may experience up to 1.5 m
of snow persisting for several weeks during winter
(Pashiardis and Michaelides 2008). The tree ring
sample sites are located at varying elevations within
the two mountainous regions, from 181 to 1489 m asl
near the species upper distributional limit (table 1). At
higher-elevation sites Pinus brutia dominates closed-
to open-canopy forests, treeline, and parkland, while
at lower-elevation sites it is relatively sparsely
distributed within savannas, grasslands, and shrub-
lands.
3. Materials and methods
3.1. Tree ring data
We examined eight residual tree ring width chronolo-
gies from Cyprus, developed from tree core samples
collected from Pinus brutia trees over the period 2003–
2013. Three of the chronologies are used and described
by Touchan et al (2014a), where sampling technique,
sample preparation, dating, and chronology develop-
ment procedures are reported. The same methods
were used to develop five additional chronologies used
in this study (table 1). Briefly, two increment cores per
tree were collected at breast height from 20−30 mature
Pinus brutia trees, and were surfaced and crossdated
using standard dendrochronological techniques
(Stokes and Smiley, 1968). Each measurement series
was fit with a cubic smoothing spline with a 50%
frequency response cutoff equal to 67% of the series
length to remove trends unrelated to climate, and a
low-order autoregressive model to remove additional
persistence (Cook and Kairiukštis, 1990). Tree ring
chronologies were developed using a biweight robust
estimate of the mean, and their lengths were truncated
where an expressed population signal value of 0.85
indicated a sample size inadequate for approximating
the true population tree ring signal at the sample site
(Cook and Kairiukštis, 1990, Wigley et al 1984).

3.2. NDVI data
The NDVI is an estimate of the fraction of
photosynthetically active radiation absorbed by Earth’s
vegetation (Sellers 1985) that has been extensively used
to monitor global productivity over the past three
decades (Running et al 2000). The satellite-derived
Global Inventory Modeling and Mapping Studies
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(GIMMS) NDVI product generated from the Ad-
vanced Very High Resolution Radiometer provides the
longest continuous NDVI record and is typically used
for long-term vegetation studies (Tucker et al 2005).
Despite its relatively coarse spatial resolution (approx-
imately 8 km grid cells), GIMMS generally agrees with
vegetation patterns estimated by more modern and
better spatially-resolved NDVI datasets (Guay et al
2014) and in-situ measurements (Vicente-Serrano
et al 2016). However, datasets from the first GIMMS
version (GIMMSg data period 1981–2006) (Tucker
et al 2005) and its successor (GIMMS3g data period
1981–2015) (Pinzon and Tucker 2014) are known to
differ significantly in some instances, particularly in
arid and mountainous regions, shrublands, and
grasslands (Fensholt and Proud 2012, Guay et al
2014, Scheftic et al 2014). The GIMMSg data were also
developed using lower-latitude calibration targets that
may be more relevant to our study than the high-
latitude calibration targets largely used for GIMMS3g
(Xu et al 2013). We compared both GIMMS datasets at
each study site with 1 km Moderate Resolution
Imaging Spectroradiometer (MODIS) (DAAC ORNL
2008) NDVI estimates, considered the best-calibrated
and highest quality record currently available (Guay
et al 2014). Over the six common years of data
(2000–2006), and consistent with the findings of Guay
et al (2014), the closest agreement is between the
means and standard deviations of the GIMMSg and
MODIS data and the GIMMSg record was therefore
used in our analysis.

3.3. NDVI, tree ring, and climate relationships
ExploratoryPearson’s productmoment correlation tests
wereused to compare each tree ring chronologywith the
nearest grid point of monthly and seasonal (averaged)
mean NDVI (Tucker et al 2005). Correlations were
tested over periods ending in each month of the 14
month period beginning in August of the previous year
and ending in September of the current year. A seasonal
NDVI record was developed to represent mean
vegetation activity during the month or season when
it ismost strongly correlatedwith tree ringwidth records
at the greatest numberof sites.MonthlyNDVIdatawere
standardized as z-scores, and these z-scores were
averaged across the target season.

Radial tree growth and seasonal NDVI records
were then compared against fluctuations in monthly
precipitation, temperature, and drought. First, tree
ring chronologies were compared with monthly
gridded NDVI, climate, and drought index records
estimated on each study site location, in every month
from August of the previous year to September of the
current year, using the program SEASCORR (Meko
et al 2011). For the climate data, correlations with
Global Precipitation Climatology Centre v6 0.5°
precipitation (Becker et al 2013, Schneider et al
2014) were calculated (data period 1901–2013), and
partial correlations were then used to identify any
3

additional influence of seasonal mean Climatic
Research Unit TS3.1 0.5° temperature (Mitchell and
Jones 2005) on radial tree growth independent of the
precipitation influence (data period 1901–2012). For
the drought data, correlations with SPEIbase v2.4 0.5°
gridded values of the standardized precipitation
evapotranspiration index (Vicente-Serrano et al
2010, SPEI) were calculated (data period 1901–
2014). The SPEI is a metric of drought that accounts
for precipitation as well as changes in evaporative
demand caused by temperature variations. The
common data period of the climate and SPEI data
with tree ring chronology records ranges from 89–112
years. Second, to determine if linkages between tree
rings and NDVI are driven by climate, the seasonal
NDVI record was also compared with climate and
SPEI data in the same manner as above. SEASCORR
(Meko et al 2011) computes confidence intervals for
correlations and partial correlations by a Monte Carlo
method (Dietrich and Newsam 1997), and tests
temporal stability of relationships by a difference of
correlations test (Snedecor and Cochran 1989) for
which the sample size is adjusted downward as needed
to account for persistence in the time series.
Throughout this study, correlations and partial
correlations were calculated over the maximum
common data period. MODIS Land Product Subsets
classifications (2.25 km2 resolution) (DAAC ORNL
2008) were used to determine land cover composition
at each sample site. The most common two classes
from the 25 classified pixels per grid cell are reported.
4. Results

All of the lower-elevation Cyprus chronologies
(<800 m asl) except HIK are significantly (p <

0.05) positively correlated with NDVI during the
winter precipitation season, with the highest seasonal
correlation occurring during February through May
(FMAM; figure 1; table 2; figure 2). The dominant,
favorable influence of December precipitation on both
FMAM NDVI and radial tree growth at lower-
elevation sites is evident in the monthly SEASCORR
analysis (figures 3(a) and (c)). These chronologies are
also negatively correlated with NDVI at some time
during the autumn prior to growth (October–
December; figure 2). FMAM NDVI and tree ring
chronologies at lower-elevation sites generally exhibit
additional significant negative correlations with winter
temperature that are independent from the influence
of precipitation (figures 3(b) and (d)). Monthly
correlations with SPEI reaffirm that, overall, FMAM
NDVI and radial tree growth at lower elevation sites
are negatively influenced by drought during December
(figure S1, available at stacks.iop.org/ERL/12/084008/
mmedia). FMAM NDVI and tree rings are also
negatively correlated with SPEI in the late spring/
summer (figure S1). The lower-elevation sites are
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Figure 1. Map of correlations between Cyprus tree ring chronologies and nearest gridded February throughMay NDVI. An inset map
shows the location of Cyprus within the broader Mediterranean region.

Table 2. Correlations of tree ring chronologies with FMAM NDVI, and vegetation cover information.

Site Pearson’s r (p) Primary landcover % Secondary landcover %

AMB −0.06 (0.78) woody savanna 84 closed shrubland 8

STP −0.17 (0.46) woody savanna 92 evergreen needleleaf forest 8

AMF −0.10 (0.62) woody savanna 100 − −

HIK 0.35 (0.09) grassland 44 closed shrubland 28

ALK 0.42 (0.04) open shrubland 68 woody savanna 20

DEG 0.39 (0.05) grassland 80 closed shrubland 12

YEK 0.58 (0.00) woody savanna 48 grassland 44

HAO 0.54 (0.01) closed shrubland 49 open shrubland 28
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Figure 2. Monthly correlations of tree ring chronologies with NDVI. Tree ring sample sites are ordered from high (top) to low
(bottom) elevation, and the NDVI data come from the grid cell nearest to each sample site. Significance (p<0.05) indicated by x.
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Figure 3. Correlations and partial correlations of FMAM NDVI and tree ring chronologies with monthly climate variables. NDVI
correlations with (a) precipitation and (b) temperature are shown at left and tree ring correlations with (c) precipitation and (d)
temperature at right. Tree ring sample sites are ordered from high (top) to low (bottom) elevation, and the NDVI and climate data
come from the grid cell nearest to each sample site. Significance (p < 0.05) indicated by x.
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mainly characterized by shrublands (shrub canopy
cover between 10%–100%) and grasslands(<10% tree
or shrub canopy cover; table 2), conditions are dry and
warm, and the period of maximum annual NDVI
occurs over winter/spring (figure 4).

The higher-elevation chronologies (>800 m asl)
exhibit different relationships with NDVI and climate
5

than the lower-elevation chronologies. Correlations
withNDVIarenegative, occurduringadifferent seasons
(prior August–September and May–June), and are
weaker, than at lower-elevations (table 2; figure 2). Only
AMB is significantly correlated with NDVI, and in a
different season (August through October, r = −0.67,
p<0.01;figure 1). FMAMNDVIat thehigher-elevation
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sites is significantly negatively correlated with precipi-
tation during May (figure 3(a)) and, independently,
significantly negatively correlated with temperature
during April (figure 3(b)), however radial tree growth is
not significantly influenced by precipitation or temper-
ature in a consistent way among these sites (figures 3(c)
and (d)). Both FMAM NDVI and radial tree growth at
higher-elevation sites are significantly negatively corre-
lated with SPEI in summer and winter, respectively
(figure S1). The higher-elevation sites are substantially
tree covered and mainly characterized by woody
savannas (40%–60% tree cover), withwetter and cooler
conditions and higher but much less variable annual
NDVI than lower-elevation sites (figure 4). All
significant SEASCORR correlations reported in this
study are stable over comparison periods.
5. Discussion

Our results point to the potential of tree rings as a
proxy for grassland and shrubland primary produc-
tivity in low-elevation and/or moisture-controlled
regions, and possibly more broadly within the global
Mediterranean biome. In these environments both
radial tree growth and grassland and shrubland
vegetation activity are strongly controlled by winter
drought, but at different times. Winter precipitation
governs coincident green-up in grass- and shrub-
dominated ecosystems, and also controls soil moisture
quantities and cambial activity in Pinus brutia later in
spring. These findings are consistent with prior studies
that document the importance of winter water
6

availability in determining shrubland and grassland
phenology (Papanastasis 1997), and spring water
availability in determining tree ring width and the
properties of tracheids in Mediterranean pines
(Campelo et al 2013, DeLuis et al 2013, Touchan
et al 2014a, Vieira et al 2010, 2014) and other conifers
(Lebourgeois et al 2012).

The timing of the annual FMAM NDVI-tree ring
moisture sensitivity is remarkably similar among
lower-elevation sites (figure 3(a) and (c), figure S1).
December, the month of greatest mean monthly
precipitation, strongly significantly influences both
NDVI and tree rings, and likely plays a major role in
regulating annual and seasonal drought (figure 3(a)).
At the grassland and shrubland sites, FMAM
incorporates the period of maximum NDVI and
is strongly correlated with mean annual NDVI
(r = 0.68−0.92, p < 0.01) such that tree ring based
reconstructions of vegetation activity during that
season have the potential to inform on annual
productivity patterns over time (figure 4(c)).

Both FMAM NDVI and annual tree growth are
also negatively influenced by warm winter temper-
atures at the lower-elevation sites. The temperature
and precipitation data at those sites are not
significantly intercorrelated during February through
March, indicating partial temperature correlations are
not artifacts of covariance between the climate
datasets. The influence of temperature on NDVI
may result from warm temperatures exacerbating
moisture deficit conditions and causing productivity
declines in grasses and shrubs (Papanastasis 1997).
Cambial processes of Mediterranean Pinus may be
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active during winter and could be negatively affected
by warm temperatures through enhanced transpira-
tion and internal water stress caused by warm and dry
winds (Liphschitz et al 1984). The (negative) sign of
the correlations with temperature indicates they do
not drive the (positive) FMAM-NDVI connection.

Correlations with SPEI offer another perspective
on precipitation and temperature interactions, and
their influence on lower-elevation FMAM NDVI and
radial tree growth. Similar to the precipitation and
temperature results, FMAM NDVI and tree rings at
these sites are significantly negatively influenced by
drought during December, although relationships
with SPEI are relatively weaker than those with climate
data (figure S1, figure 3). Since this drought index
integrates both precipitation and temperature infor-
mation, weaker correlations with December SPEI
might suggest that precipitation plays a dispropor-
tionately important role in controlling productivity
and radial tree growth at lower-elevation sites. A
similar phenomenon, where tree growth is observed to
have a stronger relationship with precipitation alone
than with the Palmer drought severity index, is seen
throughout the eastern Mediterranean (Touchan et al
2014a). FMAMNDVI at all elevations and tree rings at
lower-elevations are also significantly negatively
correlated with SPEI in the late spring/summer,
though no connection between NDVI and tree rings
exists during that season and accounting for a positive
influence of summer drought on the green-up of
grasses and shrubs in antecedent spring is problematic.

Negative correlations of tree rings with monthly
NDVI at both lower-and higher-elevation sites are also
difficult to explain (figure 2). In higher-elevation
forests, this relationship might arise from within-tree
resource trade-offs between canopy and radial growth
(Jarvis and Leverenz 1983). We have no explanation
for why high(low) grass and shub productivity and
moisture during October-December might precondi-
tion low(high) radial tree growth in the following
growing season. The monthly NDVI data are not
significantly autocorrelated at lags >1 at any site.

The type of vegetation driving NDVI measure-
ments at each site is a critical element in the tree ring-
NDVI connection. In the arid shrubland and grassland
ecosystems, NDVI fluctuations are typically spatially
and temporally cohesive, and are strongly determined
by and susceptible to drought (figure 4(c)) (Vicente-
Serrano 2007). NDVI at the higher-elevation sites is
driven by forest canopy productivity, which exhibits
smaller relative seasonal and annual changes (figure 4
(d)), corresponds weakly with drought seasonality
(figure 4(c)) (Vicente-Serrano 2007), and may have
indirect, lagged, or absent physiological connections to
xylogenesis (Berner et al 2011, Bunn et al 2013). Tree
rings and NDVI may not be as strongly linked at
higher elevations because those sites are less water-
limited, receiving greater moisture from rain and
periodically from snowmelt and experiencing more
7

moderate temperatures during FMAM than lower-
elevation sites (figures 4(a) and (b)). The mean
sensitivity (Cook and Kairiukštis, 1990) of tree ring
chronologies at these sites is lower than at lower
elevation sites. Given the very low variance of the
higher-elevation NDVI data, however, it is also likely
the weaker association between tree rings and NDVI at
higher elevations stems from a relatively muted
response of forest canopy vegetation (eg. leaf area)
to environmental fluctuations compared with grasses
and shrubs. Higher-elevation sites examined in this
study are occasionally snow-covered, however values
of the NDVI at those sites are greater than 0.1 and too
large to suggest that variance is dampened by the
presence of snow (Tucker et al 2005).

Knowledge of conifer cambial activity in drought-
limited environments is incomplete, especially with
respect to the influence of climate on the processes
comprising xylogenesis. Vieira et al (2014) emphasize
that the xylem anatomical response may fluctuate
considerably between environments and/or species,
for example based on different physiological adjust-
ments for tolerating drought. We did not observe the
drought-moderated relationships between tree ring
features and late summer and autumn forest canopy
productivity that are often documented in the
Mediterranean region (Pasho and Alla, 2015), and
even observed the opposite (negative) relationship
during the same season at the STP site. Nevertheless,
many studies describe the dominant role of winter
precipitation and temperature in controlling the
annual radial growth of Mediterranean Pinus species
in dry, low-elevation areas (Cherubini et al 2003,
DeLuis et al 2011, 2013, Klein et al 2013, Olivar et al
2012, Sarris et al 2011, Touchan et al 2014a, 2014b,
Vieira et al 2010), and despite considerable land use
change and disturbance, climate exerts an overwhelm-
ing influence on NDVI across the terrestrial Mediter-
ranean (Diodato and Bellocchi 2008). Based on these
observations and our results here, we anticipate that
Pinus and other drought-sensitive conifers can be used
to reconstruct winter vegetation activity in non-forest
ecosystems in that region. Such an effort may require
filtering or extracting NDVI data to target specific
land-cover types. Since the tree ring climate response
reflects spring moisture availability, the bimodal
spring and autumn growing pattern that commonly
produces false rings in Mediterranean water-limited
conifers (Camarero et al 2010), as well as earlywood
density and wood anatomical features, may offer
further opportunities for distilling a tree ring-
productivity linkage.
6. Conclusions

Increasing drought stress is expected to strongly
influence interannual variability in the global carbon
cycle, and profoundly affect the biodiversity, ecosys-
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tem functioning, and resilience of Mediterranean
grasslands and shrublands under future climate
warming (Breshears et al 2005, Kunstler et al 2006,
Lloret et al 2016, Poulter et al 2014, Royer et al 2011).
A multi-century view of productivity in these
environments would provide context for the severity
of recent ecosystem changes and carbon cycle shifts,
quantifying the timescales at which semiarid ecosys-
tem productivity is affected by drought, and
anticipating ecosystem resistance, resilience, and
vulnerability to extreme drought events (Vicente-
Serrano et al 2013). This study is the first to investigate
the relationship between NDVI and tree ring growth in
the eastern Mediterranean, and demonstrates that tree
ring width is a promising proxy for developing long
records of productivity for grassland and shrubland
ecosystems and similar water-limited environments
across the global Mediterranean biome. At low
elevations both FMAM grassland and shrubland
productivity and the annual radial growth of Pinus
brutia trees are controlled by winter season precipita-
tion. This relationship decouples at higher-elevations
where water is less limiting for productivity, and where
forest vegetation activity drives NDVI estimates. Our
study identifies the link between tree ring records and
broad-scale non-forest vegetation activity during two
separate seasons. Paleoreconstructions using this
approach could be optimized by reducing confound-
ing influences in the NDVI data through filtering
based on land-cover type, or by capitalizing on
summer cambial suppression and earlywood features
to capture the spring moisture signal in low-elevation
Mediterranean conifers.
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