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ABSTRACT

The lagged responsés of tree-ring indices to annual climatic or
hydrologic series are examined in this study. The objectives are to
develop methods to analyze the lagged responses of individual tree-ring
indices, and to improve upon conventional methods of adjusting for the
lag in response in regression models to reconstruct annual climatic or
hydrologic series. The proposed methods are described and applied to
test data from Oregon and Southern California.

Transfer-function modeling is used to estimate the dependence of
the current ring on past years' climate and to select negative lags for
reconstruction models. A linear system is assumed; the input is an
annual climatic variable, and the output is a tree-ring index. The
estimated impulse response function weights the importance of past and
current years' climate on the current year's ring. The identified
transfer function model indicates how many past years' rings are neces-
sary to account for the effects of past years' climate.

Autoregressive-moving-average (ARMA) modeling is used to screen
out climatically insensitive tree-ring indices, and to estimate the lag
in response to climate unmasked from the effects of autocorrelation in
the tree-ring and climatic series. The climatic and tree-ring series
are each prewhitened by ARMA models, and crosscorrelation between the
ARMA residuals are estimated. The absence of significant cross-
correlations implies low sensitivity. Significant crosscorrelations at

X



lags other than zero indicate lag in response. This analysis can also
aid in selecting positive lags for reconstruction models.

An alternative reconstruction method that makes use of the ARMA
residuals is also proposed. The basic concept is that random (uncorre-
lated in time) shocks of climate induce annual random shocks of tree
growth, with autocorrelation in the tree-ring index resulting from
inertia in the system. The steps in the method are (1) fit ARMA models
to the tree-ring index and the climatic variable, (2) regress the ARMA
residuals of the climatic variable on the ARMA residuals of the tree-.
ring index, (3) substitute the long-term prewhitened tree-ring index
into the regression equation to recomnstruct the prewhitened climatic
variable, and (4) build autocorrelation back into the reconstruction
with the ARMA model originally fit to the climatic variable.

The trial applications on test data from Oregon and Southern
California showed that the lagged response of tree rings to climate
varies greatly from site to site. Sensitive tree-ring series commonly
depend significantly only on one past year's climate (regional rainfall
index). Other series depend on three or more past years' climate.
Comparison of reconstructions by conventional lagging of predictors
with reconstructions by the random-shock method indicate that while the
lagged models may reconstruct the amplitude of severe, long-lasting
droughts better than the randomshock model, the random-shock model
generally has a flatter frequency response. The random-shock model may
therefore be more apﬁropriate where the persistence structure is of prime
interest. For the most sensitive series with small lag in response, the

choice of reconstruction method makes little difference in properties of



the reconstruction. The greatest divergence is for series whose

impulse response weights from the transfer function analysis do not die

off rapidly with time.
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CHAPTER 1

INTRODUCTION

Purpose and Scope

Statistical analysis of climatic and hydrologic data is hampered
by the short duration of many historical rainfall and streamflow time
series. Statistics from the relatively short historical record may be
misleading as indicators of expected conditions, especially when the
long-term climatic record contains appreciable persistence or trends
(Kilmartin 1976). At the same time, persistence and trends, and their
proper specification, are of great importance to the design of reser-
voirs (Henry and Cassidy 1978, Lettenmaier and Burges 1978).

Considerable work in recent years has been directed toward
developing stochastic simulation models that duplicate reasonably well
the long-term persistence properties found in geophysical time series
(Mandelbrot and Wallis 1968; O'Connell 1971; Rodriguez-Iturbe, Mejia,
and Dawdy 1972; Hipel and McLeod 1978; and others). Stockton and
Boggess (1979) have proposea that the reliability of estimates of long-
term persistence can be improved by using hydrologic series which have
been augmented or extended back in time with tree rings. This approach
is valid, however, only if the persistence in tree-ring reconstructions
faithfully mirrors the persistence in climate. As argued by Matalas
(1962), biological memory processes in the tree itself may build per-

sistence into tree-ring data.



An important function of a tree-ring reconstruction model is

therefore to adjust for, or to remove, the effects of nonclimatic
persistence-—-persistence not found in the driving climatic variables—-
from the tree-ring data. The purpose of this study is to illustrate the
use of modern time series methods to analyze the nonclimatic persistence
in tree-ring series and to adjust for nonclimatic persistence in
reconstruction models.

The reconstruction models in modern tree<ring studies have
ranged in complexity from standard multiple linear regression (Meko,
Stockton, and Boggess 1980) to multivariate techniques such as canonical
regression with predictors and predictands both transformed beforehand\
into new sets of orthogonal variables (Blasing and Fritts 1976, Stockton
and Meko 1975)..

In general, the reconstruction model acts as a filter in space
and time to transform.the tree-ring series into the predicted climatic
series. For example, a simple model to reconstruct annual precipitation

from tree rings at two sites is

b.X a1.1)

Y =a +b.X_ . +b.
6,1 TP2Xe 1 1 Y P¥ o TR

t %" "1
where Yt is the predicted rainfall in year t; Xt i is the tree-ring

£

variable at the ith site in year t; a, is a regression constant; and

0
bl’ b2, b3, b4 are the regression coefficients. The filtering in space
results from the weighting of tree rings from two different locations:
the larger—scale climatic variations common to both sites are empha-

sized, and the local climatic variations are smoothed out. The filtering

in time results from including tree rings from years other than year t



as predictors of climate in year t. The need for filtering in time
arises from the lag in the trees' response, which causes a climatic
anomaly in year t to be reflected not only in the ring-width anomaly for
year t, but also to some extent in the ring-width anomalies for one or
more subsequent years (Fritts 1976, p. 27).

This study concentrates on the lagged response of tree rings to
an annual climate variable, and the related problem of lagging of tree
rings in regression models to reconstruct the climatic variable. Some
specific questions that are addressed are: (1) How many lags should be
included in the regression model? (2) Does this number vary among tree-
ring sites? and (3) Can lagging be dispensed with in favor of an
alternative technique?

The answers to these questions are tied to the lagged responses
of the individual tree-ring series to the climatic variable. Techniques
that have proven useful in other fields in studying the lagged response
in stochastic systems are Box-Jenkins time series and transfer-function
mcdeling. For example, in the biological sciences, autoregressive-
moving-average (ARMA) time series modeling was used by Kuehl, Buxton, and
Briggs (1976) to clarify the lagged relationship between a climate
variable and boll retention in cotton. Transfer-function modeling has
been used to study the lagged responses in economic (Wallis 1977,
Bruggeman and O'Neill 1980, Zellner and Palm 1974) and hydrologic
(Sharma 1980, Whitehead 1979) systems.

ARMA and transfer-function modeling are applied to the problem
of lagged response of tree rings to climate in this study. The approach

taken is to model the responses of individual tree~ring series in two



test regions to annual rainfall indices in the regions. One region is
centered in Southern California, the other in Northern Oregon. The
results of the modeling are used to select lags for reconstruction
models, and the regional precipitation indices are reconstructed using
the selected lag models.

In addition, an alternative reconstruction method is proposed
and tested. This method makes use of ARMA modeling to 'prewhiten' or
remove the autocorrelation from the tree-ring series and the rainfall
index before regressing the one on the other to estimate the reconstruc-
tion equation. In this method, nonclimatic persistence is treated at
the prewhitening stage, and no lags are included in the regression
equations.

Finally, the regressions and long-term reconstructions by this
alternative method are compared with those by the lagged-tree-ring
method, and the advantages and disadvantages of each method are dis-

cussed.

Background

Persistence in the annual time series of the climatit variables
governing growth is one possible source of persistence in tree-ring data.
Lagging schemes would be unnecessary in reconstruction models if this
were the only source of persistence. The autocorrelation in many tree-
ring series is too greaty, however, to be attributed to climate alone
(Stockton 1975), suggesting that additional persistence--referred to as
nonclimatic persistence in this study—is built into the tree-ring series

either by the biological system of the trees or by outside influences.



Sources of Nonclimatic Persistence

The most obvious source of nonclimatic persistence in tree-ring
data is error in removal of the growth trend when converting annual ring
widths to tree-ring indices. This indexing procedure, called standard-
ization, is accomplished by fitting a mathematical function to the ring-
width series and dividing the measured ring widths by the corresponding
value of the function, which may be an exponential, a polynomial, a
straight line (Stokes and Smiley 1968), or a spline function (Cook 1981).
The mathematical curve is intended to represent the underlying trend of
decreasing ring width with increasing tree age. This is only a mathe-
matical approximation, however, and it is often a matter of judgment
which curve to fit. An inappropriate choice of curve, or any substantial-
deviation of the true "age trend" from the selected curve, may build
autocorrelation into the tree-ring index.

The age trend is only one of many possible sources of nonclimatic
persistence. Natural cycles in biological processes may tend to build a
periodicity into tree-ring indices. For example, many species tend to
produce heavy seed crops at intervals of several years (Harlow and Harrar
1968). Stored photosynthate may consequently be channeled into cone
growth at the expense of ring growth at similar intervals. Fires (Keen
1937) and insect infestation (Keen 1937, Murrow and La Marche 1978) may
also induce surges and depressions of growth lasting several years. The
same may be said of any other factor that alters the vitality of the
tree or the competition from neighboring trees for moisture and light

(Fritts 1976, p. 244).
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Nonclimatic persistence can also arise from the distribution of
the effects of a climate anomaly over several years by carryover in the
biological response of the tree. For example, a very dry year may cause
roots to die back, needles to drop, and stored food to be depleted such
that the vitality of the trees and their capacity for photosynthesis is
lowered for several subsequent years (Fritts 1976, p. 26).

Soil moisture storage may also build in nonclimatic persistence.
A soil moisture anomaly affecting tree growth at the end of the growing
season in year t may linger to affect ring width in year t+l. Soil
moisture capacity, drainage properties of the soil, rooting depths of
trees, and the selected annual climatic variable are likely to determine
the size of this effect.

Careful selection of tree-ring sites and fitting of growth curves
can possibly eliminate some of the effects mentioned above, and minimize
the nonclimatic persistence in tree-ring indices; but persistence due to
carryover in the biological response is not likely to be amenable to
these measures.

Lagging Schemes in Tree-Ring
Reconstructions

Early workers in dendroclimatology recognized the need for con-
sidering nonclimatic persistence in interpreting tree rings. Schulman
(1956, p. 39) cautioned against deriving relationships between rainfall
and tree rings without recognizing the '"carry over effect of excessive
or deficient rainfall of earlier years, especially following extensive
wet or dry periods." He found that the response of trees to a wet year

sometimes lagged by more than a year, especially if the period preceding



the wet year was yery dry, and attributed the lag to a "weakened
vitality" of trees following a severe extended dfought.

Fritts (1962), in multiple linear regression analysis of ring
widths against climatic, water-balance, and ﬁrior—growth variables,
found statistically significant correlation between earl&wood width in
year t and;the preceding year's latewood width. Further work by Fritts
(1965, 1974) indicated that as many as three preceding years' growth
were significantly correlated with the current year's growth. In a
study of 127 coniferous sites in western North America, Fritts (1974)
found that ring growth on the average was directly correlated with the
width of rings formed in the preceding season, and less with rings for
two or three previous years.

Soon after the adoption of multivariate statistical techniques
in tree-ring reconstructions (Fritts et al. 1971), several different
methods for adjusting for nonclimatic persistence in reconstruction
models were developed. All of these included lagged tree-ring indices
in one form or another as predictors of a climate variable or a set of
climate variables.

In discussing the various lagging schemes, it is convenient to
use matrix notation to designate a generalized N-years by M-variables

predictor matrix

Wip Wge - wl,M_\

W1 Y20 :
= ’ : : (1.2)
M . . .

WN,1 c e WM




8
where each column is a time series of a predictor variable and each row
represents an observation or year. The M variables may be tree-ring
indices or orthogonal transformations of tree-ring indices; and the pre-
_ dictor matrix may be calibrated with the climate variables by multiple
linear regression (Draper and Smith 1966), principal components regres-
sion (Céoley'and Lohnes 1971), or canonical regression (Glahn 1968), de-
pending on the design of the problem. The focus of this study, however,
is the method of including lags.

The most straightforward lagging scheme is stepwise multiple
linear regression of the climate variable on the lagged tree-ring
indices (Douglas 1976, 1980; Meko, Stockton, and Bogess 1980). The
columns in the predictor matrix (1.2) are tree-ring indices, current
and lagged, from several sites. These predictors are determined by
stepwise regression from some larger pool of potential predictors, again
made up of lagged tree-ring indices.

A shortcoming of this scheme is that the pool of potential pre-
dictors becomes uncomfortably large as the number of tree-ring sites
increases, and as more lags are considered. The danger of spurious
inflation of the multiple correlation coefficient (squared) (R2) is
consequently great (Rencher and Pun 1980).

Another shortcoming is the multicolinearity or intercorrelation
of the predictors in the regression equation. Multicolinearity is in-
herent in the model itself, since the tree-ring indices are presumably
correlated with one aﬁother and also autocorrelated. Multicolinearity
can lead to regression equations whose coefficients are illogical in

sign and magnitude, and consequently useless in interpreting the



relative importance of the various predictors (Cooley and Lohnes 1971,
p. 56).

For example, in the drought study of Meko, Stockton,.and Boggess
(1980), several of the weights in the final regression equation were
illogical given the physical system. A rational equation would have
positive coefficients on lags 0 and +1, and negative coefficients on lag
-1: the positive weights on years t and t+l1 would imply high growth in
those years associated with wet conditions in year t. The negative
weights on t-1 would imply that the estimated wetness of year t indi-
cated by rings t and t+l should be reduced if the ring for year t-1 had
also been wide. The weights were logical through the first seven steps
of the stepwise procedure, but were illogical for four of the final five
steps. Evidently, multicolinearity was important in the final regres-
sion equation. It should be noted that in the case of negative lags,
the sole reason for a predictor to enter the regression is multico-
linearity, since there obviously is no cause-effect relationship between
the climate in year t and the tree rings from previous years. The
critical question is whether the physically unrealistic model resulting
from effects of multicolinearity leads to unreliable long-term recon-
structions. The only sure way to guard against this possibility is by
careful verification with independent data (Cooley and Lohnes 1971, p.
57).

One final drawback to the stepwise regression approach in ad-
justing for persistence is the uncertainty in selection of lags to in-
clude for the initial set of potential predictors. Assumption of a very

small number of lags (e.g., t-1l, t) may reduce the likelihood of
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artificial inflation of R2 mentioned earlier, but runs the risk of un-
satisfactorily accounting for persistence in tree-ring series that may
have a large lag in their response to élimate. Assumption of a large
number of lags, on the other hand, may allow for more flexibility in
adjusting for persistence, but runs the risk of artificially inflating
R?.

Stepwise regression on lagged tree rings is ciearly not practical
when the number of tree-ring sites is large. It is also cumbersome if
the predictand set consists of more than one variable. Orthogonal trans-
formations have proven useful in these situations to emphasize large-
scale ::jﬁ;xns of tree-growth anomalies, reduce the set of predictors

and predictands to some tractable number of . transformed variables, and.

eliminate the risk of multicolinearity.
The method of combining lagging with orthogonal transformation
has varied from study to study. The first method, used by Stockton

(1971, 1975) to reconstruct annual streamflow, defines a set of p

orthogonal tree-ring variables

z z z ce. Z (1.3)

t,1° “t,2°

by transforming the lagged tree-ring indices. Each new variable zt,i
is a linear combination weighting the tree-ring indices both in space
and in time. Some subset M of the p transformed variables then serves
as the predictors in the generalized predictor matrix (Eq. 1.2). The

M variables to be used as predictors are selected to maximize the per

cent variance explained R2 of the climatic data.
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This method avoids the problems of multicolinearity, since the
predictor variables are orthogonal to one another. It also facilitates
treatment of large masses of data by transforming cumbersome tree-ring
and climatic data sets into manageable subsets of predictors and pre-
dictands. The lagging scheme is very restrictive, however, in linking
the adjustment for persistence to the covariation of the tree-ring
indices in space. While orthogonal transformations on unlagged tree-
ring indices can be interpreted as preferred modes of spatial variation
of tree growth--which may be related to similar spatial patterns in
climate—-the transformations on lagged data do not lend themselves to
physical interpretation. Conceptually, they are hybrids-of covariance
in space and persistence in time. There is no logical reason to expect
such hybrid modes of variation to exist.

Another problem is that the number of lags to include on the
tree-ring indices is uncertain. The number must be either assumed or
arrived at by trial-and-error reconstructions using different numbers of
lags. The problems with assuming a number of lags were mentioned before.
The drawback of trial-and-error reconstructions is that if enough models
are tried, the criteria of a '"good" model are likely to be satisfied
eventually by chance alone. The model may yield a high R2 and even good
agreement with independent data, if the independent data had already
been brought into play in comparing the different reconstructions; but
the long-term reconstruction generated by the model may be unreliable.

A second lagging scheme in models with orthogonally transformed
variables is to transform the unlagged tree-ring indices, and lag the

resulting transformed variables in the predictor matrix (Stockton and
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Meko 1975, Fritts 1976). The tree-ring indices are transformed into a

set of K orthogonal variables:

Z e 5 Z (1.4)

z t,k

t,1°° Tt;2° Zt,3’ :

where each variable is a linear combination weighting the tree-ring
indices in space but not in time,

A subset of the orthogonal variables is then lagged in the pre-
diction matrix (Eq. 1.2). For example, if the model includes two ortho-

gonal variables, lagged t-1, t, t+l, then the predictor variables are

yA (1.5)

zt+1,1’ Zt—l,z’ Zt,2’ t+1,2

2¢-1,1° %e,1°
which corresponds to the predictor variables

1% (1.6)

W £,6

W

t,1’ t,2> """

in the generalized predictor matrix (Eq. 1.2).

The orthogonal variables Zt Z vee Z here, unlike in

,1° 7t,2° t,k

the previous method, can be interpreted as preferred modes of spatial
variation in tree growth. This is a conceptual advantage. Unforfunately
however, the lagged predictors that make up the predictor matrix are not
mutually orthogonal. Thus one objective of transforming--elimination of
the effects of multicolinearity-—-is sacrificed.

The method also does not allow for variations in persistence
structure from site to site. Instead, persistence in large-scale
patterns of tree growth is adjusted for by lagged predictor variables

such as Zt_ In addition, the choice of lags is again uncertain, and

1°

may lead to the pitfalls discussed earlier.



13

A modified version of the method just discussed has recently
been used by Fritts, Lofgren, and Gordon (1979). The modification is to
include in the predictor matrix orthogonal variables that are transfor-
mations of "corrected" tree-ring indices. The correction consists in
removing autocorrelation from each tree-ring series individually by
fitting the tree-ring series to a first-order autoregressive [AR(1)]
model. The residuals from the models are the '"corrected" tree-ring
indices.

The corrected tree-ring indices are then orthogonally trans-
formed as the original tree-ring indices were in the previous method.
The orthogonal variables from both the original tree-ring data and the
corrected tree-ring data are all included as predictors in the predictor
matrix (Eq. 1.2).

The modification is probably an improvement in that it recog-
nizes the site-to-site variations in persistence and attempts to adjust
for it. The other problems associated with the previous method, how-
ever, are still present. In addition, the set of potential predictors
is now larger, increasing the possible number of trial-and-error re-
constructions that may be run. The likelihood of a spuriously high R2
is consequently increased.

The method of correcting the tree-ring indices is also not ideal.
The persistence may not follow an AR(1l) model, but a more general ARMA
(p,q) model (Hipel and McLeod 1978). Moreover, climatic persistence may
inadvertently be removed along with nonclimatic persistence in fitting
an AR(1) model to the tree-ring index without also considering the auto-

correlation of the climate variable over the same period.
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In summary, lagging schemes previously used in tree-ring recon-

structions suffer from the following problems.

1.

Excessive reliance on trial-and-error reconstructions, or step-
wise selections from large pools of potential predictors may
lead to spuriously high calibration statistics. An inappro-
priate reconstruction model may consequently be selected, and
the reconstruction may be unreliable.

Site~to-site differences in persistence of tree-ring indices are
largely ignored, especially by meéthods that link the persistence
adjustment to large-scale patterns of tree—growth anomalies.
Multicoliﬁearity may lead to physically unrealistic regression
equations and unreliable reconstructions. This is true of
multiple linear regression models using lagged tree rings, and
of models using lagged orthogonal variables as predictors.
Adjustment of tree rings for persistence by AR(1l) modeling
without regard for the autocorrelation structure of the climatic

variable to be reconstructed may be misleading.

Each of the lagging schemes discussed in this chapter has its

advantages and disadvantages. The geographical scale of the study, the

amount of autocorrelation in the c¢limatic and tree-ring series, and the

type of information desired from the study‘help determine the most

appropriate scheme. For some studies, more thorough treatment of per-

sistence than offered by these schemes may not be warranted. Where

detailed treatment is desired, however, modern time-series methods are

available that make the problem tractable.
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An adequate choice of lagging schemes and of lags to include in
reconstruction models canbbe made only if the statistical form of the
lagged responses of the individual tree-ring series to the climatic
variable of interest is understood. The time-series methods described
in the next chapter can be used to study the lagged response, and to

select appropriate lagging schemes tailored to the individual tree-ring

series.



CHAPTER 2
METHODS

Autoregressive-moving-average (ARMA) time series modeling and
transfer function modeling are first briefly described. Applications
for studying the lagged response of a tree-ring index to a climatic or
hydrologic variable are then proposed, and suggestions for selecting
lags for reconstruction models are given. Finally, an alternative
method to lagging to adjust for nonclimatic persistence in reconstruc-
tion models is described.

Several other time series and statistical methods are used in
this study; but since they have been previously used in dendroclima-
tology and widely in other fields, their general descriptions are de-
ferred to the appendices. Aspects particular to this study are

elaborated on as the need arises.

Autoregressive-Moving-Average Modeling

An ARMA model is a particular form of time series model for
transforming an original time series X, whose observations may be
correlated, into a series of uncorrelated, identically distributed
residuals, or random shocks at (Box and Jenkins 1968). The series X,
is assumed to be given as deviations from some mean level x in the dis-
cussion that follows.

The suite of possible ARMA models includes autoregressive,
moving average, and mixed models. In the autoregressive AR(p) model,

16
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X, is linearly dependent on previous values X, _1> Xpgr tees Xt—p and
on the residual at. Thus
x, = ¢1 X + o (2.1)
and
x = ¢1 x4 + ¢2 X, + o (2.2)

are AR (1) and AR (2), respectively, where ¢1 and ¢2 are the parameters
of the model.

In the moving average MA (q) model of order q, X, is linearly
dependent on at and on one or more previous residuals atol’ at—Z’ cees

a . Thus
t-q
x, = ozt - 91°‘t—1 (2.3).

x, =oa - 60 -6 (2.4)

1%1-1 7 Y2%-2

are MA (1) and MA (2), respectively, and 61, 92 are the moving-average
parameters.

The mixed autoregressive-moving-average ARMA (p,q) model of
order (p,q) is a hybrid model in which X, depends on past values X 1

and on current and past residuals a_, O a . Thus

* t-p t’ "t-1° Tt-q

s seesy X

t-2

o -6 ¢] (2.5)

xt-d)xt_l— -¢pxp_p =a -6 ;... qat—q

is a general ARMA (p,q) model.

The main steps in ARMA modeling are: (1) identification of the
model, (2) estimation of the parameters, and (3) diagnostic checking of
the fitted model. Identification refers to the selection of the type
(AR, MA, or ARMA) and order (p,q) of the model. Models in this study

were identified by the Akaike Information Criteria (Akaike 1974),
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computed from

AIC (p,q) = N log (Si) + 2 (p+q) (2.6)

where N is the number of observations (years) iﬁ the time series e and
Si is the sample variance of the residuals at of the fitted ARMA (p,q)
model. According to the criterion, the model with the lowest AIC is

the best model.

The identification and estimation steps necessarily overlap in
using the AIC, since trial-and-error fitting entails estimation of
parameters for each entertained model. Maximum likelihood estimétes of
the parameters were calculated by a modified steepest descent algorithm
(Box and Jenkins 1976, p. 233) with the packaged International and
Statistical Libraries, Inc. (IMSL) subroutine FTMAXL.

Diagnostic checking is the evaluation of the adequacy of fit of
a model. Various methods are recommended by Box and Jenkins (1976, Ch.
8). Two methods were used in this study: (1) inspection of the sample
autocorrelation function of the residuals, and (2) calculation of the
"Q" statistic N
Q=N I 12 (@ (2.7)

k=1
which is approximately distributed as x2 with N-p-q degrees of freedom
(Box and Pierce 1970). In Eq. 2.7, N is the number of years of data
used in fitting the ARMA (p,q) model, and rk(a) is the sample auto-
correlation of the residuals o, at lag k. The summation is carried

out over K lags, where the size of K is left to the judgment of the

investigator; in this study K = 20,
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Large autocorrelations in the residuals are a sign of inadequate
fit, and will stand out in inspection of the autocorrelation plots, as
well as inflate the statistic Q (Box and Jenkins, 1976, Ch. 8).
Confidence limits on the residuals of fhe autocorrelations
depend on the values of the estimated ARMA parameters (Box and Pierce
1970). Autocorrelations and their two-standard-error confidence limits

were computed from equations given in Appendix A.

Transfer-Function Modeling

Box-Jenkins transfer-function modeling is a particular approach
for identifying a physically realizable linear system in the time
domain, in the presence of noise. This approach was developed largely
by Box and Jenkins (1968), and the description here follows their book
on time series analysis (Box and Jenkins 1976).

The system is illustrated in Figure 1. The input X and output
y, are assumed to be stationary. In the applications to be discussed
later, X, is a climatic variable and v, @ tree-ring index, and both

series are assumed to be given as deviations from their mean levels.

Noise

N,

Linear

System

Figure 1. Diagram of Linear System.
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The system is represented mathematically by

y. = L v, x . +N_, (2.8)
t k=0ktk t ,

where the weights Vgr V9o V ... are called the impulse response

2°
function, and Ntbis the noise term. The impulse response function
weights the importance of past and current observations of the input.
The conversion of input deviations to output deviations by an
impulse response function is illustrated in Figure 2 for an input and
an output that are initially at their mean levels. The output devia-
tion Ve can be regarded as a linear aggregate of a series of super-
imposed impulse response functions scaled by the deviations X - The
input deviations at times t=1, t =2, and t=3 produce impuse response
patterns of deviations in the output, which add together to produce the
overall output response (Box -and Jenkins 1976, p. 339). The impulse

response v, weights the importance of an input deviation at time t to

k
the output deviation at time t +k.
The transfer function model of order (r,s,b) is a reformulation

of the linear model (Eq. 2.8).into

y, = Glyt_l-+62yt_2-+...-+6 y

t r' t-r
+ w X - w,X - L..- WX
o t-b 1" t-b-1" °- s t-b-s
<+ - - — e ™ .
N, - 8N 1 76N SNy (2.9

where 6., ... 6§ , w , w,, ... W are parameters of the model, and the
1 o s

1

order of the model is defined by:

r

r = the number of lagged terms on Ye
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Impulse - I |
Response

Vo V, V.
Function ot
t —
3 -2 -1 0 1 2 3 4 5 6 1T 8B 9 101l
f
i
Input —— -
Xt
Output e——e \._,/: o
Yy
Figure 2. Linear Transfér by a Response Function -- Linear transfer of

input X to output Y by impulse response function V
(adapted from Box and Jenkins 1976, p. 349).



s = the number of lagged terms on X,

b = delay time of response.

The model (2.9) reformulates dependence on an indefinite number
of past inputs X 1> Fpogy X gs eo into dependence on a specific

number of past inputs x eee X and past outputs Vee1 200 Yeoyp The

t-1 t-s
usefulness of this reformplation is evident if X, is a climatic
variable, and y, a tree-ring index.

Transfer function modeling, like ARMA modeling, can be broken
down into the stages of identification, estimation, and diagnostic
checking (Box and Jenkins 1976, p. 335). The objectives of this study,
however, are satisfied by the identification stage, which yields the
numbers r and s of past years' output (tree rings) and input (climate)
influencing the current year's output.

Identification is accomplished by plotting the estimated impulse
response weights and comparing the decay patterns of the weights to
theoretical patterns corresponding to transfer function models of
specific orders (r, s, b). The next two sections describe estimation of
the impulse response function and identification of the transfer function
model.

Estimation of the Impulse
Response Function

The impulse response function Vo v12 v2 ... in (2.8) can be

estimated from sample crosscorrelations between prewhitened input and

transformed output (Box and Jenkins 1976, p. 379). The procedure is

diagrammed in Figure 3 and described in the following paragraphs.
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Y

) . Compute
Fit ARMA Residuais Cross-correlations
Model to xt @, Between

ay and b}

Transform
by Sama ARMA
Model fit to Xt

Output

Y

0 ¢

Figure 3. Procedure for Estimating the Impulse Response Function.

Prewhitening of the Input. Prewhitening refers to the removal

of autocorrelation from a time series by fitting the series to an ARMA
model. The procedure is conveniently shown mathematically by adopting
the backward-shift notation of Box and Jenkins (see Appendix B). The

general ARMA model (Eq. 2.5) can be written
$(B) X, = 6(B) a (2.10)

where ¢$(B) and 6(B) are polynomials of order p and q, respectively,

defined as

2 P
¢(B) =1 - ¢,B - ¢, B" - ... ¢pB (2.11)
and
6(B) =1- 6.B- 6.8~ ... - 6 B (2.12)
1 2 q ’
and B is the backward shift operator such that th =X _q-
An ARMA (p,q) model is first fit to the input X, - The residuals

at from the fitted model are related to the original time series (mean

removed).xt by
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o®) 67 (®) x, = o (2.13)

The series o is the prewhitened input, and is ideally made up of random
shocks or white noise, although this may not be true if the model is a

poor fit. Given the fitted model, the residuals 0_ can be generated

t

from X, by Equation (2.13).

Transformation of the Output. Equation (2.13) gives at as a

linear transformation of X, - The transformed output is generated by

applying the same linear transformation to Veo Thus

-1
o(B) 6 “(B) v, = Bt (2.14)

The series Bt is generally not random, since the transformation
¢(B) B_I(B) was originally derived to transform x, to random residuals.
Only if X, and Ve happened to follow exactly the same ARMA model would

Bt be random.

Computation of Sample Crosscorrelation Functions. The cross-

correlations ra,B(k) between oL and B; at lag k are directly propor-
tional to the impulse response weights Vos Vis Vo e in Eq. (2.8).

The sample crosscorrelations thus provide estimates of the impulse
response weights (Box and Jenkins 1976, p. 380; Chatfield 1975, p. 221).
The relationship is

s

Ve =5 Tk (2.15a)

QR (o

where S,» Sg are the sample standard deviations of a, and Bt (Box and

B
Jenkins 1976, p. 380).

t
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The significance of a given v, can be judged from two-standard

k
error confidence limits for the crosscorrelations r, B(k). These con-

fidence limits can be computed from

2 SE = 2/ JVar(rk) (2.15b)

where Var(rk) is .the sample variance of raB(k) computed by Eq. (A.11)
in Appendix A. Note that Var(rk) cannot be computed by Eq. (A.12)
because the sample variance of raB(k) is a function of the autocorrela-

tion in at and Bt, and while ut is random, Bt,is generally not.

Identification of Transfer—Fuﬁction Model

Identification of the transfer-function model [Eq. (2.9)] con-
sists of finding the order (r,s,b) or, equivalently, of finding how many
previous observations of Ve and x, are important in determining the
current value of Ve

The main tool for identification is the estimated impulse
response function (Box and Jenkins 1976, p. 378). The general linear
model [Eq. (2.8)] can be written in backward-shift notation (see
Appendix B) as

Ve = V(B) x, + N (2.16)
is the noise term,

where X, and y, are input and output deviations, N

and V(B) = v0-+v1B-+v2B2—+v3B3-+... is the impulse response operator

(see Appendix B).

t

The general transfer-function model can similarly be written in
backward-shift notation as

y = &1 (8) w(B)x, + N, (2.17)

t
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2 8
where §(B) = 1-8,B~8,B" ... —GrB"’ and w(B) = 6 - wB-wB-...-wB

s
are the output operator and input operators, and other terms are defined
as before in Equation (2.9).

Comparison of Equation (2.17) with Equation (2.16) yields the

identity

V() = 81 (B)u(®) (2.18)

which gives the relationship between the impulse response function Vp»

S 5 Whs

Vis Vgs eee and the transfer function parameters 61, 62, e 8

Wys vee W

Box and Jenkins (1976, p. 378) show how this relationship allows
selection of values for r, s, and b in the transfer function model from
inspection of the plotted estimates Vgr Vi V

s V ... of the impulse

2 3’
response function. Characteristic decay pattern of the impulse response
weights are shown to correspond to specific-order (r, s, b) transfer-
function models. Identification is accomplished by comparing plotted
estimates of the impulse response weights with characteristic decay
patterﬁs. Figure 4 shows characteristic decay patterns for some
particular transfer function models of various orders r and s. Box and
Jenkings (1976, p. 349) also allow for delay in the initial response by
including a delay parameter b in the model. In this study, however,
b =0, since the initial response to a climate fluctuation is year t
occurs in the ring for year t.

Pattern matching by visual inspection is necessarily subjective

and becomes more and more difficult as the noise level Nt becomes

larger relative to the signal X, (Box and Jenkins 1976, p. 387). The
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r,s,b Transfer Function Model Impulse Response
¥g T X
00,0 t t - _ _
o 2 3 45,6 78090
02,0 y = .25)&1 + .50xt_l+.25 X4 0
10,0 y= .50y, +.50%
y = -60y~40y,, +
2,1,0
h .40Xf + ,40 X*-I
= .60y — .40y +
y %-l t-2
2,2,0
.20x1+.40x1__|+.20x‘_2
Figure 4. Impulse Response Functions for Some Specific Transfer-

Function Models -- Noise term is assumed to be zero.
Adapted from Box and Jenkins (1976, p. 349),
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general features of importance in matching are the type of decay pattern
(single versus double exponential) and the presence or absence of pre-
liminary values preceding the decay. The pattern-matching steps are
shown in a flow chart on Figure 5. Where two or more models seemed
equally plausible in this study, the simpler was selected.

The noise term Nt is generated from the impule-response form of
the linear model [Eq. (2.8)]. Since the summation in Equation (2.8) is
infinite, the impulse response function must arbitrarily be truncated at
some lag in generating initial noise estimates. - The truncation point was
lag k=10 for all models in this study.

Nt is in general not random, but is assumed to follow an ARMA
model called the noise model (Box and Jenkins 1976, p. 362). The noise
model can be fit by the general ARMA modeling procedure described at

the beginning of this chapter.

Analysis of Lagged Response of Tree Rings
Transfer-function modeling gnd ARMA modéling can be applied to
study the lagged response of a tree-ring index to a climatic variable.
This section proposes three possible uses.
1. To estimate the number of past years' climate or tree rings
that statistically influence the current ring.
2. To determine whether climate in year t affects future ring
widths through autocorrelation in the tree rings, or through a
more direct pathway.

3. To screen out insensitive tree-ring sites,
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Estimated Impulse
Response Function v.
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Large Impulse Response
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\
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| Pattern.

Y
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Figure 5. Flow Chart of Procedure for Identifying Transfer-Function
Models -- Symbols are as defined in Equation (2.9), p. 20 in
text. Sample impulse response plots are also given to
illustrate the types of situations that may be encountered.
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Dependence on Past Year's
Climate or Tree Rings

If the climate variable is regarded as the input X, and a tree-
ring index the output Ve in the general linear system [Eq. (2.8)], the
estimated impulse response weights indicate the relative importance of
past years' climate to the current year's tree-ring index. The identi-
fied transfer-function model then reformulates the dependence on past
climate into dependence on past years' tree rings.

The model and the reformulation can perhaps be made clearer by a
simple example. Consider a transfer function model [Eq. (2:9)] of order
(r=1, s=0, b=0),

y, =8y, _j+ux +N -8 N (2.19)

t t-1°

giving the tree-ring index yt in year t in terms of climate X, in year
t and tree-ring index in year t-1. The term Ye-1 in Equation (2.19)

can be substituted for by

Yeo1 = J yt—2'+“bxt—l-+Ntfl'-6 N, (2.20)
to get
2
V. = woxt-+w0 Gxt_l-+6 Yep (2.21)
+N_+6N_ _ +6°N
t t-1 t-2

Successive substitutions of this kind eventually yield
y. = w,(x, +8x +62x +...+8x_ )
t 0"t t-1 t-2 t-i

+ Glyt_i + noise terms (2.22)
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Equation (2.22) gives the tree-ring index in year t in terms of
weighted past years' climate, some remote past year's tree-ring index,
plus noise. To satisfy requirements of stability, IGI must be smaller
than 1.0 (Box and Jenkins 1976, p. 346). Equations (2.22) and (2.19)
therefore show that statistical dependence on one prior ring and current
year's climate is equivalent to exponentially decreasing dependence on
many past years' climate.

Comparison of Equation (2.22) with the general linear model
[Eq. (2.8)] suggests an impulse response function of the shape shown

below:

b,

Note that this shape is the characteristic decay pattern (see Figure 4)
for a (1,0,0)-order transfer function, which is the initial model given
by Equation (2.19).

In practice little is known about the form of the lagged
response at the start of anmalysis. The first step is to estimate the

impulse response weights Vor Vi Vor V ... and to plot them along with

3°
their confidence limits. The next step is to identify the transfer
function model from visual inspection of the impulse response plot,
following the guidelines outlined in Figure 5.

If, as in the previous example, the estimated impulse response
function decays exponentially, identification leads to a (1,0,0)

transfer-function model. Such a result implies that the tree-ring index

in year t depends on several past years' climate, but that this
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dependence can be adequately summarized statistically as dependence on
only one previous year's ring.

Lagged Response Minus Effects of
Autocorrelation

The lag in a tree's response to climate as indicated by the
impulse response function can arise from two distinct pathways: inertia
in the biological system, or direct influence of climate in year t on
one or more subsequent rings. The first pathway is passive, the second
active. The distinction is illustrated in Figure 6, which shows a
hypothetical response of a tree-ring series to a climate variation in
year t. The straight solid lines labeled a and b designate possible
pathways of direct influence of climate on ring width. The curved solid
lines ¢ and d designate possible independent pathways of persistence--
independent in that autocorrelation in one series need ﬁot be driven by
autocorrelation in the other series. The dotted lines designate rele-
vant pairings for sample autocorrelations rxx(k) and ryy(k)’ and sample
crosscorrelation estimates rxy(k)'

Assume that the following notation applies:

i#40 direct influence by pathway i

He

=0 no direct influence by pathway i
where i may represent pathways a, b, ¢, or d.
Sample crosscorrelations could indicate statistically signifi-
cant lég in response (rxy(l) # 0) for any of the following reasons:
1. b # o: >climate in year t directly influences the tree-ring
index in year t+1. A stochastic representation is that the

tree-ring index is a moving average of several years' climate.
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2. a#0,b=0, c=0, and d # 0: climate in year t causes a
growth response in year t and the inertia in the biological
system of the tree leads to a related deviation from normal in
ring width in year t+l. A stochastic representation is that the
tree ring depends on the previous year's tree-ring index and the‘
current year's climate. Here the system is autoregressive.

3. a#0,b=0, c#0,d=0: climate in year t causes a growth
response in year t, and autocorrelation in the climatic variable
indirectly leads to a spuriously significant non-zero cross-
correlation rxy(l) through similar autocorrelation induced in

the tree-ring series.

The only direct pathway for a lag in response is number 1: the
other two pathways may lead to a spuriously high rxy(l) solely because
of autocorrelation in the individual series. ARMA modeling can be used
to distinguish direct lag from spurious lag. The spurious effects of
autocorrelation can be eliminated by removing the autocorrelation from
(prewhitening) the time series before computing their sample cross-—
correlation functions (Jenkins and Watts 1968, p. 340). A statistically
significant crosscorrelation between the prewhitened series at lak k
indicates a direct lag in response. The required steps in the procedure
are summarized below.

1. Fit the climatic series and the tree-ring index series for a
common time period to separate ARMA models. This can be accom-
plished by the modeling procedures described earlier in this

chapter. The ARMA residuals are the prewhitened series.
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2. Compute the sample crosscorrelation function between the pre-
whitened series and test the significance of the crosscorrela-
tion estimates by computing the two-standard-error confidence
limits by Equation (2.15b). Note that since both series are
random, the sample variance in Equation (2.15b) can be computed
by
Var (r(k)) = 1/N (2.23)
where N is the sample size (Jenkins and Watts 1968, p. 340; and
Equation A.11 in Appendix A).
Screening Out of Insensitive
Tree—-Ring Series
The sample crosscorrelation between two time series may be
spuriously large because of autocorrelation in the individual series
(Jenkins and Watts 1968, p. 338). A better estimate of the degree of
relationship between the series can be found by the procedures just dis-
cussed: ARMA modeling and subsequent crosscorrelation analysis of ARMA
residuals. If none of the sample crosscorrelations are significant, it
may be concluded that the series are not significantly related to one
another (Jenkins and Watts 1968, p. 340). The procedure just discussed
can therefore be used to screen out climatically insensitive tree-ring

series.

Selection of Lags for Reconstruction Models

The information on the lagged response given by the transfer-
function modeling and the crosscorrelation analysis between prewhitened

series can be used to select lags for reconstruction models. The
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general problem, as discussed in Chapter 1, is which lags, ,,. t<2,
t-1, t, t+l, t+2, ... of the tree-ring indices to include in a regres-
sion model to predict climate in year t.

The order (r,s,b) of the identified transfer-function model
provides useful information on the required negative lags. The transfer
function model [Eq. (2.9)] indicates that the tree-ring index in year t
depends on the climate back through year t-s and on r previous years'
tree-ring indices. The larger of r and s therefore marks the upper
limit on the number of past years that need to be considered in ad-
justing the tree-ring index for persistence. Appropriate negative lags
for the reconstruction model are accordingly lags through t-T, where T
is the larger of r and s in the identified transfer function model.

The selection of positive lags for the reconstruction model is
more complicated than the selection of negative lags. Positive lag k is
included to take advantage of any information on climate in year t in
the ring for year t+k. The size of the estimated impulse-~response
weight Vi [Eq. (2.8)] measures the relative importance of climate in
year t to the tree-ring index in year t+k. One possible approach,
therefore, is to include positive lags t+k in the reconstruction model,
where k is any lag with a significantly large estimated impulse-response
weight vy
This adv ice must be tempered by the additional considerationm,
however, téat the lag in the response may be a spurious result of
autocorrelation, as described earlier in reference to Figure 6. The

purpose of including positive lags in reconstruction models is to gain

additional information on climate in year t not already found in ring t
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adjusted for prior growth. The crosscorrelation analysis on prewhitened
variables may therefore be a more appropriate tool than the impulse
weights for selecting positive lags. The positive lags to include would
accordingly be those with significantly large crosscorrelatioms.

The importance of the décision on positive lags to the final
reconstructions is discussed further in referring to the trial applica-
tions in Chapter 3. First, however, a possible alternative reconstruc-
tion technique that makes use of prewhitening of regression variables

is described.

An Alternative Reconstruction Model

If the crosscorrelations between prewhitened climate and pre-
whitened tree-ring index are insignificant except at lag zero, the ring
in year t adjusted for past conditions provides all of the available
information on climate in year t. The prewhitened variables-—-ARMA
residuals—-in such a system conceptually represent random shocks of
climate and tree growth. The single significant spike in the sample
crosscorrelation at lag zero indicates that random shocks of climate are
related to random shocks of tree growth, with no lag in the response.

A consistent reconstruction model is to reconstruct shocks of climate in
year t from the random shock of tree growth in year t. The random
shocks of tree growth required as predictors are residuals from fit of
the tree-ring éeries to an ARMA model.

For example, -consider the simple system illustrated in Figure 7,
with climate deviations Yer tree-ring index deviations X o and an

impulse response function v For convenience, noise is assumed to be

K
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Figure 7. Diagram Illustrating Use of Prewhitening to Filter the
Climatic Signal from a Tree—Ring Series -- The lengths of

the bars are proportional to deviations of the series from
their mean levels,
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zero, and tree rings and climate are assumed to be at the mean levels in
the years immediately preceding the two wet years t=5 and t=6. The
climate deviations for those years are transferred to output deviations
(tree-ring index) according to the impulse response [Eq. (2.8) and
Figure 2].

Cursory inspection of the climate and tree-ring index plots in
Figure 7 suggests that perhaps rings t+l, t+2, and t+3 should be in-
cluded as predictors of climate in year t in a reconstruction model.
This suggestion may be misleading, however, beéause the information on
climate in years 5 and 6 from subsequent rings may be redundant. More
appropriate representation if the random shock concept holds true is a
one-to-one correspondence between random shocks, as can be seen from the

tree-ring series prewhitened by the model o =x - 0.5%x The

X, t t t-1°
appropriate reconstruction model therefore is to prewhiten the tree-ring
index, and scale the resulting ARMA residuals by a constant. For a
system including noise, the constant might represent a regression co-
efficient that would allow some per cent of the variance of the Ve to be
predicted by the shocks ax,t'

A reconstruction model consistent with the random-shock concept
is proposed here for more general conditions. The main steps are to (1)
remove the autocorreleation from (prewhiten) the tree-ring series and
climate series individually by fitting ARMA models to them, (2) regress
the prewhitened climatic variable against the prewhitened tree-ring
indices, (3) generate a reconstructed series of the prewhitened climate

variable using the estimated regression equation, and (4) build back the

autocorrelation into the reconstructed prewhitened climatic variable.
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The procedure is summarized in flow chart form in Figure 8, and

is discussed in detail in the following sections.

Mathematical Procedure

Prewhitening. The tree-ring index xtvand climate variable Ve

are fit to ARMA (p,q) models

P (B) x =6 _(B) o (2.24)

,t

and

¢, (B) vy = 8,(B) o (2.25)

v, t
where ¢X(B), O*(B),-¢y(B), and Gy(B) are backward shift operators
analogous to those described in the section on transfer-function
modeling [Eqs. (2.11) and (2.12)]. The notation is explained in
Appendix B. The residuals ay ¢ and o . are the prewhitened variables.

b b

Ideally, ay ¢ and ax ¢ are white noise, although they may not be if the
b 9
ARMA model is poorly fit. A common period is used for fitting both

models.

Crosscorrelation Functions. Sample crosscorrelation estimates

raxay(k) between ax,t and ay,t at lag k are computed [Eqs. (A.9) and

(A.10) in Appendix A] for the same period used to fit the ARMA models.
The sample crosscorrelations are plotted and tested for sig-
nificance. Assuming the filtered series are random, the standard error
of the crosscorrelation estimates is
SE =/1/N (2,26)
where N is the number of years in the series (Jenkins and Watts 1968,

p. 340).
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Regression. The prediction equation is derived by simple linear

regression (Draper and Smith 1966) of prewhitened climate ay ¢ O Pre-

whitened tree-ring index ax e The resulting equation is of the form

=5 +b ' )
&y,t b0 blax,t (2.27)

A A
where b0 and b1 are the constant and regression coefficient and the hat

(") denotes predicted or estimated values.

Transformation of Long-Term Tree-Ring Series. The regression

equation (2.27) provides estimates of the prewhitened climate variable

ay : from the prewhitened tree-ring index O ¢+ The long-term tree-ring
9 9

record must therefore be converted from x, into oL ¢ before substituting
2
in Equation (2.27). The conversion is made by applying the original

ARMA prewhitening model for x_ to the long-term tree-ring index:

O e = e‘xl(B) ¢, (B) x, (2.30)

where the terms are defined as in Equation (2.24). The long-term

series o+ is not necessarily white noise, even if o ¢ in the calibra-
’ ’

tion period is, because the prewhitening model [Eq. (2.24)] was

estimated from data in the calibration period only.

Reconstruction of Prewhitened Climate. The series ax N
’

generated in the previous step is substituted into the regression

equation (2.27) to generate long-term estimates 0.

v, t of the prewhitened
’

climate variable:

a =5 +b.a (2.31)
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Building Autocorrelation Back Into the Reconstructed Series.

The long-term reconstruction &y t is transformed by
9 .

~ A ~
Ve T ¢y (B) Gy(B) “y,t (2.32)

where the operators(&(B) and Oy(B) are the same as in the original pre-
whitening model [Eq. (2.25)] and §t is the desired long-term recon-

struction in terms of the original climate variable.

Discussion of the Method

Hypothetical Examples. The operations in the reconstruction

procedure and the logic behind them can perhaps be made clearer by con-
sidering some simple hypothetical examples. Consider first the simple
system with the following properties: (1) climate Ve follows a simple

AR(1) model
Ve = 0.5y, 3 =a . (2.33)

(2) the trees build in no additional autocorrelation (pathway a = 0 in
Figure 6) and the tree-ring index series follows the same AR(1l) model

as the climate:
xt - 0.5 X _q = ax,t (2.34)

Analogous to the situation described in Jenkins and Watts (1968,

p. 338), direct estimates of the crosscorrelations between x_ and Ve

t

might wrongly indicate a lag in the relationship between x,_ and Yo

t
manifested by large crosscorrelations at lags other than zero.

Prewhitening produces series

Gy,t =V, - 0.5 Yeo1 (2.35)

and
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o =x - 0.5 X, (2.36)

X, t t -1’
which are white noise correlated significantly only at lag zero. The
regression equation [Eq. (2.27)] is

A

a = 80 +bya . (2.37)
The long-term tree-ring indices are transformed by
ax,t =X - 0.5 X 1 (2.38)
and substituted into Equation (2.37) to get a reconstruction of ay e
9
which is subsequently transformed back into the original climate
variable by the equation
Ve = O.5yt_1 + ay’t (2.39)

This first example is trivial in the sense that no lags are
needed for reconstruction: a satisfactory reconstruction would simply
be the tree-ring index scaled by some regression constant. The proposed
reconstruction method accomplishes the same thing as simple scaling,
though in a roundabout way. A certain amount of autocorrelation is
removed at the prewhitening stage, and the same amount is built back in
when the reconstructed prewhitened climate variable is transfored by
Equation (2.39) back into the original climate variable.

Consider next an example in which the tree-ring index series is
appreciably autocorrelated, but the climate variable is not. Assume
that the climate variable Ve is random, and that the tree-ring index X,

follows the ARMA model
X, - 0.5 X 4= o (2.40)
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The regression equation is

ay,t = b0 + blax,t F2.41)

Since the climate variable is assumed to be white noise, Ve = ay e and
b

the reconstruction equation is

Ye = bO + P o, (2.42)

17x%,t

In this example, a prewhitened tree-ring index serves as the pre-
dictor for the climate variable. A similar procedure, discussed in
Chapter 1, has been used in tree-ring reconstruction by Fritts et al.
(1979). There are some important differences, however. Fritts et al.
(1979) assumed that the ARMA model for the tree-ring index was ARMA(1,0),
fit the model to the long-term tree-ring index series, and did not model
the climate variable. The method proposed here fits a general ARMA

(p,q) model to the tree-ring data from the same period covered by the

climatic series, and also fits an ARMA model to the -climate series.

This method reduces to that of Fritts only if the following conditions
are satisfied: (1) the climate series in the calibration period is
random; and (2) the tree-ring series follows an AR(1) model in the
calibration period, and the same AR(1l) model in the long term.

As a final example, assume that the tree-ring index and climate
variable are autocorrelated, but not equally, so that the climate
follows the AR(1) model

Y, - O.Zyt_1 = ay,t (2.43)
and the tree-ring index follows the different AR(1l) model

x, - 0.5 X _q = ax,t (2.44)
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The regression model is

a =By +bja (2.45)

Persistence is removed from the tree-ring index and climate
variable by Equations (2.43) and (2.44). The regression equation (2.45)
is then used to reconstruct O 3 and finally, persistence is built back

b

into the reconstruction by the transformation

a (2.46)

= 0.2 yt—l + _

Tt

This example is a hybrid of the previoué two examples: auto-
correlation in the tree-ring index arises partially from autocorrelation
in the climatic variable, and partially from inertia in the trees'
response to climate. Prewhitening of the tree-ring index series removes
both climatic and nonclimatic persistence. The prewhitened tree-ring
index series is therefore best related not to the original climatic
variable, but to the adjusted climatic variable given by Equation (2.43).

Conceptually, the prewhitened variable a

v, t represents the random shocks
’

of climate that induce corresponding random shocks of tree growth.

Limitations. An important shortcoming of the method proposed
above is that all information on climate in year t is assumed to come

from current and past rings x Future rings x

£’ xt"'l’ Xt_z, cee t+1°

X . «.. do not enter into the reconstruction for year t. For example,

t+2

the model given by Equation (2.46) can be rearranged and expanded into

Y, = 0.2 yt_1-+b0-+bl (xt-O.S xt—l) (2.47)
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A long-term reconstruction of ¥, can be generated from (2.47) by

assuming a starting value for Yeo1? and substituting in tree rings X, -

A reconstruction for year t therefore requires (1) previous year's

t-1°

and rings in subse-

reconstruction,,§t_l, (2) tree-ring indices for years xt and x

In reality, however, the ring in year X1
quent years can possibly hold independent information on climate in year
t not found in the ring for year t adjusted for the past rings X, 10

X This possibility was discussed earlier regarding Figure 6.

TR
The physical system could eaéily give rise to such a lag in
response. For example, assume that the ring in year t has essentially
finished growing in early summer, and that heavy rains throughout the
sumer and fall provide favorable moisture conditions for high net
photosynthesis and food storage through July, August, and September.
These high food reserves may help lead to a wide ring in year t+l. If
the climate variable is water-year (October-September) total precipita-
tion, climate invyear t has affected ring growth in year t+l; and the
ring in t+1 holds information on climate in year t not found in the ring
for year t. The converse situation would apply of severe drought
occurred in summer and fall, with low net photosynthesis, root dieback,
and foliage damage helping to contribute to a narrow ring in year t+l.
Another possible limitation of the method is that the ARMA
models may fit the data poorly. The ARMA residuals may consequently be
autocorrelated, and the formula for confidence limits on the cross-
correlation [Eq. (2.23)] of prewhitened variables may not apply.

A related problem is the possibility that more than one sample

crosscorrelation estimate raxay(k) may be significant by the
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two—-standard-error criterion. The regression model [Eq. (2.27)]

relating o to a may then be inappropriate, since « is sig-
& y,t X, t y pprop ’ y,t & .
nificantly correlated with ax : at some lag k other than k = 0. One
’

possible solution is to compromise the random shock model and alter the

regression equation to allow for lagged oL+ as predictors of ay e
b s

For example, if raxay(k) is significant at lags k=0 and k=2, the

altered regression model is

& =b +b. a0 +56 (2.48)

vt 20 T P1 % e T P2 %, et

where terms‘are as defined in Equation (2.31).

Model (2.48) implicitly allows the tree-ring index in years
t+1 and t+2 to help determine the predicted climate in year t; this
may be an advantage over (2.27), considering the physical system. The
random shock concept no longer applies in (2.48) however, since a moving
average of ranqom shocks can not logically be interpreted as a random
series itself. This last point makes the altered form statistically
inconsistent, and for this reason, only the unlagged form of the pre-
whitened model [Eq. (2.27)] has been considered in the trial applica-

tions in the next chapter.



CHAPTER 3

APPLICATION OF THE BOX-JENKINS APPROACH TO
DATA FROM TWO TEST REGIONS

The methods discussed in Chapter 2 have been applied to test
data from two regionsin the western United States. The first section of
this chapter describes thé data. Subsequent seétions describe the
results of applying transfer functions and ARMA modeling fo study the
lagged responses of individual tree-ring series to climate. Finally,
climate is reconstructed by the prewhitened-variable method, and the
reconstructions are compared with reconstructions from regression models

using lagged tree-ring indices.

Data

The two geographical areas selected for application of the Box-
Jenkins techniques are shown on the maps in Figures 9 and 10. In the
analyses that follow, they are referred to as the North region and the
South region. The South region was selected because of the abundance of
climatically sensitive tree-ring data on file from there, and the
author's previous work with the data (Meko, Stockton, and Boggess 1980).
The North region, not nearly as well represented by high quality tree-
ring collections as the South, was selected to test the application of
the proposed methods where the climatic signal/noise ratio in the tree
rings is relatively small. A reconstruction for the North was also of
interest because of the great importance of that area to water supply

49
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in the western United States. In addition, reconstructions for both
regions would make possible a study of north-south coherence of dry

and wet periods.

Climatic Data

Conceptually, the methods proposed in Chapter 2 can be applied
to study the relationship between tree-ring series and any climatic or
hydrologic variable, although trees generally respond to more than one
climatic variable. The variable .selected for the trial applications of
the Box-Jenkins technique was a regional precipitation index repre-—
senting rainfall grouped over a year corresponding roughly to the growth
year of the tree. Precipitation indices were computed for the North and
South regions by the following procedure.

1. September through August precipitation was totaled for indi-
vidual weather statioms.

2. Each annual precipitation series was standardized, or converted
to "Z-scores" by subtracting the mean and dividing by the
standard deviation.

3. Tﬂe individual station Z-scores were averaged.

Four stations (Figure 9) were averaged to form the South precipitation
index, and three stations (Figure 10) to form the North index.

The station precipitation records were taken from annual
summaries of Local Climatological Data (U. S. Weather Bureau, ESSA and
NOAA) and were checked for homogeneity by double-mass analysis (Bruce
and Clark 1966, p. 160). Means and standard deviations for 1901-1963

in the South and 1897-1961 in the North were used for standardization.
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In the following discussion, these years are referred to as the calibra-

tion period in the two regions.

Precipitation Climatology of the South Region. Most of the pre-

cipitation in the South region falls in the winter months, with a
February peak in the long-term monthly medians (Figure 11). Precipita-
tion is usually high from November through April, and low in the late
spring, summer, and early fall. This pattern is typical of the entire
area that includes the tree-ring sites and climatic stations (Pike 1972,
p. 113). Cool-season precipitation in the region is associated with
extratropical Pacific cyclones that become more frequent with southward
displacement of the polar jet stream from early fall through late
winter (Pike 1972, p. 18). Summer rainfall usually comes from convec-
tive showers in moist, unstable, tropical air that occasionally flows
into the region from warm oceans to the south. The summer rainfall is
large enough in some parts, especially away from the coast, to give a
small secondary maximum in the monthly distribution of precipitation in
Julf or August (Pike 1972, p. 113).

The precipitation index time series of the South is plotted in
Figure 12 along with the standardized single-station precipitation for
Cuyamaca. Broad swings above and below the mean characterize the years
after the mid-1930's: rainfall was generally high from the mid-1930's
to the mid-~40's, and low from the late 1940's through the early 1960's.
The 1970's were also dry until the extremely wet year 1978. The years
1941 and 1961 were the extremes in single-year wetness and dryness. The

spatial yariability of annual precipitation is illustrated by the
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occasionally large deviations of the single station record for Cuyamaca
from the regional index. For example, 1947 was the driest year by far

at Cuyamaca, but was only moderately dry by the regional index.

Precipitation Climatology of the North Region. The winter

months do not dominate the monthly distribution of precipitation in the
North as much as in the South. Cool-season precipitation in the North
is again largely governed by the gradual southward displacement of the
polar jet étream from early fall through iate winter (Pike 1972, p. 18).
The month of peak average precipitation in winter varies from November
to January, depending on geographical location within the region, and on
topography (Pike 1972, p. 78).

Convective precipitation is increasingly important from west to
east over the region; at the eastern end of the region, the month of
peak precipitation is shifted to late spring. Pike's (1972, pp. 113-
114) maps of precipitation-regime boundaries indicate that the climatic
stations and tree-ring sites in Figure 10 may be grouped in the fol-
lowing way.

1. At Hood River and tree-ring sites 1, 6, 7, and 8, winter rain-
fall dominates with a January peak in the monthly distribution.

2. At Walla Walla and tree-ring sites 5 and 9, the.peak month in
winter precipitation is shifted to November, and late spring
convective showers become increasingly important in the annual
total precipitation.

3. At Baker and tree-ring sites 2, 3, and 4, convective precipita-

tion is heavy enough to make June the peak rainfall month;
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winter rains give a secondary maximum in November, December, or

January.

Evidently, the North precipitation index is more complex in
makeup than :‘the South. A given year's value of the index in the North
may reflect precipitation anomalies that occurred at various times of
the year, ranging from early fall through late spring, while the Sou;h
index more clearly reflects winter anomalies in rainfall. This in-
homogeneity in climate over the area regarded here as a region must be
considered a possible source of error in attempting to reconstruct the
regional climate.

The time-series plots of the North regional precipitation index
and the Hood River index (Figure 12) show gradually declining precipita-
tion from the beginning of the record in 1897 through the late 1930's,
increasing precipitation from the late 1930's until the late 1950's, and
relatively little low frequency variation thereafter. Prominent wet
years were 1915 and 1941; by far the most prominent dry year was 1977,

both according to the regional index and the Hood River record.

Tree-Ring Data

The tree-ring data used were in the form of indices, which are
annual ring widths adjusted for an underlying trend of decreasing ring
width with increasing tree age. The age trend is removed by fitting a
mathematical curve (exponential or polynomial) ar straight line :to the
ring widths, and dividing each ring width by the corresponding year's
value of the fitted curve (Stokes and Smiley 1968, Fritts 1976). Tree-

A

ring indices from several cores are averaged to form the tree-ring index
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for a site. Typically, ten or more trees, each represented by at least
two cores, are included in the average (Fritts 1976). .

All sites had been previously collected by other researchers,
and the data were on file at the Laboratory of Tree-Ring Research at The
University of Arizona. Consequently, the data probably are not the most
ideal for reconstructing climatic variation; but the main objective here
is to demonstrate the use of the Box-Jenkins technique. The locations
of sites are shown on the maps in Figures 9 and 10, and additional in-
formation on location, species, and sample record length is given in
Table 1. Many of the series extend well back beyond the 1500's; but to
ensure an adequate sample size for climatic inferences, only the data
from 1600 on were used in this study:- The year of collection marks the
latest date of the period available for calibration with climatic data.
With a few exceptions, the South series were collected in the mid- to
late-1960's, and the North series in the early 1960's.

Time series plots of the tree-ring indices (Figure 13) show
general site-to-site coherence in major periods of low and high growth
within regions, but considerable variation in details. The standard
deviation differs by almost a factor of two between the most variablev
and least variable series in the South, and by more than a factor of two
in the North. These differences are significant at the .05 confidence
level based on an F~test on the ratios of variances (Walpole and Myers
1972, p. 242), even when the effective sample size is adjusted for per-
sistence as recommended by Dawdy and Matalas (1964, pp. 8-86). The long-
term means are constrained to equal 1.0 by the method of converting

ring widths to indices; the means in Tables 2 and 3 differ from 1.0 only
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Table 1. List of Tree-Ring Sites -~ Sites are numbered as in Figures 9
and 10.

No. Site Lat . Long Elev(m) Speciesa Periodb
1S San Gorgonio 34°07! 116°49' 3280 LP 42BC-1970
28 Santa Ana 33 34 117 33 1210 BCS 1611-1972
3S Baldwin Lake 34 16 116 49 2280 PP 1513-1966
4S Santa Rosa 33 32 116 28 2190 CIC 1684-1972
58 Southern California 34 03 117 05 1400 BCS 1415-1966
6S White Mountains 37 25 118 10 3110 BCP 800-1963
7S Clark Mountain 35 32 115 35 2190 WF 1596-1968
8S San Pedro Martir Low 31 00 115 25 1980 PP 1449-1971
IN Dufer 45°16' 121°08' 580 PP 1600-1964
2N  Union 45 09 117 37 1430 PP 1565-1964
3N Chief Joseph 45 17 117 17 2560 WBP 1538-1964
4N  Slickrock Creek 45 17 117 19 1980 LP 1160-1965
5N  Paulina 44 16 119 53 1310 PP 1600-1965
6N Abert Rim Lookout 42 23 120 14 2130 PP 1511-1964
7N  Lakeview 42 06 120 34 1830 PP 1421-1964
8N Susanville 40 29 120 33 1830 PP 1485-1963
9N Peacock Canyon 44 55 120 15 1900 DF 1670-1978
aLP limber pine (Pinus flexilus; James)

BCS bigcone spruce (Pseudotsuga macrocarpa; Mayr.)

PP ponderosa pine (Pinus Ponderosa; Laws)

CIC California incense cedar (Libocedrus decurrens; Torr.)

BCP bristlecone pine (Pinus aristata; Engelm.)

WF white fir (Abies concolor; Gord and Glend.)

WBP whitebark pine (Pinus albicaulis; Engelm.)

DF Douglas fir (Pseudotsuga menziesii; Franco)

bData are available for this period, but this study does not use data
from earlier than 1600 because of inadequate sample size.
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Table 2. Long-Term Statistics of Tree-Ring Indices in South Region --
Period for computations was 1684-1963 for Santa Rosa and
1610-1963 for all other sites.

Site ' Mean Median St. Dev. Skew
San Gorgonio .99 .98 .23 .13
Santa Ana 1.00 1.01 .40 .09
Baldwin Lake .99 1.01 .40 .19
Santa Rosa 1.00 1.01 .27 -.32
S. California .99 1.00 41 .06
White Mountains 1.02 1.01 ] .35 -.47
Clark Mountain .99 1.01 .39 .08

Martir 1.01 1.05 .28 -1.00

Table 3. Long-Term Statistics ¢f Tree-Ring Indices in North Region --
Period for computations was 1673-1961.

Site Mean Median St. Dev. Skew
Dufer 1.00 1.02 .20 -.17
Union 1.00 1.00 .24 .87
Chief Joseph 1.00 1.00 .19 .10
Slickrock 1.02 1.02 .15 .25
Paulina 1.01 1.00 .25 .31
Abert Rim 1.00 .99 .18 -.29
Lakeview 1.04 1.03 .22 .33
Susanville 1.03 1.04 .34 .08
Peacock 1.00 1.02 .33 .06
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because they are not computed on the entire record length. The close-
ness of the means and medians attests to the representativeness of the
mean as. a measure of central tendency. Comparison of the tabled skew
coefficients with Monte-Carlo derived distribution graphs of Wallis,
Matalas, and Slack (1974, p. 17) indicated thét except possibly for the
Martir and Union sites, skews are not significantly different from zero.

A key property regarding the lagged response is the persistence
structure of the individual time series. The difference in persistence
among tree-ring series and between tree-ring series and the precipita-
tion indices shows clearly in the sample autocorrelation plots in Figures
14 and 15. The ‘South tree-ring series are in general less persistent
than the North series, as measured by the size of the first order auto-
correlation and the number of autocorrelations significant at the 95%
confidence level. There are exceptions to the rule, however (e.g., San
Gorgonio, Susanville, Abert). The number of significant autocorrela-
tions varies from none (San Pedro Martir, White Mts.) to five (Slick-
rock).

The precipitation indices, in contrast, are much more nearly
random. The only significant autocorrelation in either series is at lag
5 in the North series, and then only barely so at the 95% confidence
level. The persistence in the tree-ring series is therefore not related

to a corresponding persistence in precipitation.

Transfer Function Modeling

The transfer-function methods described in Chapter 2 were

applied to the regional precipitation indices and the tree-ring indices,
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A separate transfer-function analysis was run for each éree—ring series,
with the regional precipitation index as input and tree-ring index as
output. The years for derivation of the transfer function were 1901-
1963 in the South and 1897-1961 in the North.
Relevant equations were given in Chapter 2, and are not repeated
here except occasionally for clarity. Where equations are used, mathe-

matical symbols follow the notation of Chapter 2.

Impulse Response Functions
The regional precipitation indices were prewhitened using the
"best fit" ARMA model. The Akaike Information Criteria [Eq. (2.6)] was

used to determine the best fit model, which was the AR(1) model
X, = 0.0674 = at (3.1)
for the South precipitation index, and the AR(2) model

x - 0.0605 x
t t-

1 - 0.1977~xt_2 =a, (3.2)

for the North, where X, is the precipitation index (mean subtracted) and
at are the ARMA residuals, which are referred to as the prewhitened
input. The small coefficients in these models reflect the low auto-
correlation in the precipitation indices (see Figure 14). Accordingly,

prewhitening removes very little of the variance from the original

is 997 of the variance of x_ in the South

series. The variance of Q. N

and 87% in the North.
Each tree-ring series was then transformed by the same ARMA
model that had been fit to the regional precipitation indices. Tree-

ring indices in the South were transformed by
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y, - 0.0674 y ., =B, (3.3)

and those in the North were transformed by

-2 = Pt (3.4)

Ve ~ 0.0605 yt_l5-a0.1977 y
where A is the tree-ring index (mean subtracted) and Bt is the trans-
formed output.

Sample crosscorrelations between prewhitened input and trans-
formed output were calculated, along with 95% confidence limits from
formulas given in Appendix A. These crosscorrelations are proportional
to the impulse response weights. The sample crosscorrelations and their

confidence limits are plotted in Figure 16. The individual plots are

discussed below.

South. The onlf series with no significantly large weights was
White Mountains: this series was consequently omitted from further
analysis for lack of sufficient relationship to the precipitation index.

The remaining plots varied greately, but were similar in some
important aspects. First, the lag-zero weight was largest at all sites,
indicating that current year's rainfall was more important than past
years' rainfall. Second, the lag-1 weight was large relative to other
lags at four of the sites. The resulting pattern resembled a rapid
exponential decay at Santa Ana, Santa Rosa, and Clark Mountain, indi-
cating a rapid die-off in importance of past years' climate, with sig-
nificant influence limited to lags at years t and t-1.

Third, significant climatic input at higher-order lags than t-1
was indicated for Baldwin Lake and Southern California. The marked

difference between these two plots and those which decay rapidly
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Estimated Impulse Response Weights -- First eight plots are
for South sites; last nine are for North sites. Plotted
values are the crosscorrelations given by Equation (2.15)
on page 24. Two-standard-error level of significance is
indicated by a dashed line [see Equation (A.12) in
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Dufer is an exception, however, with a lag-l maximum, and Union is a
borderline case in which the lag-0 weight is only slightly larger than
the lag-1 weight. Like Baldwin Lake and Southern California in the

South, Dufer shows significant climate input at lags higher than 1.

General. The estimated impulse response functions indicate thgf
the lagged response of tree -rings to annual rainfall varies greatly from
site to site, both in the number of past years' rainfall that are im-
portant, and in the relative importance of each year. The number
appears to vary between 1 and 3, assuming that the higher-order sig-
nificant spikes occasionally found on the plots in Figure 16 are
due to noise. The most important year is generally the current year, t,
although year t-1 may approach year t in importance, and may even
dominate (as in Dufer).

A recurring pattern in lagged response is a rapid die-off in
importance of past years' climate that resembles an exponential decay,
with weights becoming small after lag 1. On the other hand, some
impulse patterns decay more slowly, or in a form resembling a damped
sine wave, with significantly larger weights at lags higher than 1.
These latter sites can be interpreted as having relatively long

"memory" of climate.

Transfer Functions

The estimated impulse response functions weight the importance
of current and past yeafs' climate to the current year's ring. As
described in Chapter 2, the transfer function reformulates this rela-

tionship in terms of dependence on past years' rings and past and
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current years' climate. The impulse response form [Eq. (2.8)] was

y, =v.x, +Vv.x +...+ noise term (3.5)

+

£ V0%t " V1%e-17 V2¥e-2

where e is the tree-ring index,:% is the precipitation index, and Vg
Vs Vs oo are the impulse response weights. The transfer-function

[Eq. (2.9)] reformulates Equation (3.5) into

.. +68 y

+-62yt-2'+ r’ t-r

Ve = 63Yp

w - W T .. = W - i .
+ 0¥ 1¥e-1 Xe_g ~ Doise term (3.6)

where r is the number of past years' tree-ring index, and s is the
number of past years' rainfall index upon which the tree-ring index Ve
is dependent.

Models were identified by the procedures described in Chapter 2.
The identified models are listed in Tables 4 ané 5. The noise term Nt
was generated from the impulse weights by the linear Equation (2.8),
with k truncated at 10:

10

N =y, - vV, X 10
t t =0 k “t-k

(3.7)

where Y, is the observed tree-ring index (mean subtracted), X, is the
rainfall index (mean subtracted), and Vi is the impulse response weight

at lag k.

Identified Models. Identification for some of the models was

conjectural, as the variance of the noise term was nearly as large as
the variance of the output signal given by the summation in (3.7).
Nevertheless, the decay patterns in the estimated impulse response

weights (Figure 16) suggested at least two distinct orders of
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transfer-function models. The most common was (r=1, s=0, b=0),
inferred from an impulse response function judged to decay as a simple
exponential. This pattern occurred in 4 of the 8 South series and 3 of
the 9 North series. The second major decéy type was judged to be more
complex than simple exponential, and is represented by the impulse plots
for Baldwin Lake and Dufer. This type of decay suggests either a
2,1,0) or (2;2,0)»transfef—function model (see Figure 4).

The noise term Nt generated by Equation (3.7) varied greatly
from site to site, both in magnitude as given by variance, and in
persistence structure, as given by the best fit ARMA model by the AIC
criterion [Eq. (2.6)]. The noise was generally not random. Considering
some of the possible sources of noise (e.g., growth curve errors,
growth surges caused by fires or insect manifestations), this result

probably should be expected.

Implied Lagged Response. The identified transfer-function

models are generally consistent with a physical system in which the tree-
ring index in year t depends statistically on input from the rainfall in
year t and possibly in years t-1 and t-2, plus input from the tree-ring
index in year t-1 and possibly t-2.

The simplest form (r=1, s=0, b=0) implies important input
from only the rainfall in year t and the previous year's ring width.
The most complicated form (r =2, s=2, b=0) implies important input
from the past two years' climate and the past two years' tree-ring

index.
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Selection of Lags for
Reconstruction Models

A simple reconstruction model was assumed in which the regional
fainfall index Ve was to be predicted from a single iagged tree-ring
index series X - The question was then how many lags on x, to include
in the regression model to (1) adjust for the priming of the ring growth
in year t by previous years' climate and (2) take into account the
possible information on climate in year t residing in rings for years
after year t. Following the procedures in Chapter 2, the orders of the
identified transfer function model were used to select negative lags and
the estimated impulse-response weights were used to select positive lags.
Lags for single-site reconstruction models are listed in Table 6.

The simplest lag model has as predictors tree rings lagged only
t and t-1; this model is implied by a (r=1, s=0, b=0) transfer-
function model with an impulse weight on lag 1 insignificant at the two-
standard error level. The next simplest model is t-1, t, t+l, implied
again by a (1,0,0) transfer function model, but with a significant
impulse weight on lag 1.

The decision on negative lags was between one lag (t-1) or two
lags (t-1, t-2); the noise level in the climate-tree ring system was
probably too large to justify using higher lagged models (see Box and
Jenkins 1976, p. 387). The decision on positive lags was sometimes very
ill-defined, especially when several lagged impulse weights were large
and it was desired to keep the total number of predictors small. A
rational approach was adopted in which the lowest-order positive lags

were preferred. The logic here is that climate in year t probably
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Table 6. Implied Lags for Regression Models.

Significantb
a Impulse

Site TFM Weights t-2 t-1 t t+l  t+2 t+3
South Region:
Gorgonio (2,1,0) 0,5 X X x
Santa Ana (1,0,0) 0,1 b4 X X
Baldwin L. (2,1,0) 0,2 X X X X
Santa Rosa (1,0,0) 0 X X
S. Calif. (1,0,0) 0,1,2,6 X x X
Clark (1,0,0) 0 X X
Martir (1,0,0) 0 b'e x
North Region:
Dufer® (2,1,0) 0,1,3 X x X X b4
Union 2,1,0) 0,1,0 X X X X
Paulina (1,0,0) 0,5 X X
Lakeview (1,0,0) 0 X x
Peacock 1,0,0 0,1 X X b4

aOrder of transfer-function model rewritten from Tables 4 and 5.

Lags of impulse response weights significant at two-standard error
level.

CImpulse response weight at lag t+2 for Dufer was not significant at
two-standard-error level, but was nearly so. Lag on t-2 was not
included to keep total number of predictors under six.
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influences the ring in year t+1'more.strong1y than the ring in years
t+2, t+3, ... . The selected positive lags in Table 6 are thus partly
a result of subjective judgment. The number of positive lags ranges
from zero to three.

ARMA Modeling and Crosscorrelations of
Prewhitened Series

The impulse response function does not distinguish between
lagged response arising fro direct influence of climate ¥, on tree rings
in subsequent years, and indirect influences from inertia in the tree-
ring response in year t. The crosscorrelations between prewhitened
climatic and tree-ring series were proposed in Chapter 2 as a tool for
studying the lagged-response ummasked from the effects of autocorrela-
tion. The ARMA models for prewhitening the regional precipitation
indices were necessary in the transfer-function modeling, and have
already been discussed. In that analysis, the tree-ring indices were
not prewhitened themselves, but only transformed by the ARMA models fit
to the precipitation indices. 1In this analysis, the precipitation

indices and the tree-ring indices are separately fit to ARMA models.

Prewhitening Models

The prewhitening models and their estimated parameters are listed
in Table 7 and the plots of prewhitened series are shown in Figures 17
and 18. The site-to-site variation in persistence of tree-ring series
(Figures 14 and 15) is reflected in the wide range of variance ratios
in Table 7. Prewhitening removed only about 9% of the variance of the

White Mountains series, but more than 50% of the variance of other
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Table 7. Prewhitening Models —- Models for first 9 series (South) were

fit to 1901-1963 data.

Region) were fit to 1897-1961 data.

Models for last 10 series (North

2

a Parameters b
Order Variance c d
Series (p,d,q) ¢1 ¢2 ¢3 Ql Ratio Sng, n_
South Index® (1,0,0) .067 .98 49 0
Gorgonio (1,0,1) .920 .637 .67 .05 0
Santa Ana (1,0,0) .591 .66 .99 0]
Baldwin L. (2,0,0) . 354 443 .45 .78 1
Santa Rosa (1,0,0) 454 .77 .50 0
S. California (1,0,0) .576 .66 .99 1
White Mtns. (1,0,0) .253 .91 .55 1
Clark Mtn. (1,0,0) .457 .78 .85 0
Martir (1,0,0) .202 .94 .90 0
North Index®  (2,0,0) .061 .197 .87 .68 1
Dufer (1,0,0) .572 .63 .71 0]
Union (2,0,0) .559 .197 .50 .88 1
Ch. Joseph (2,0,0) .339 .371 .60 .44 0
Slickrock (3,0,0) .293 .319 .223 .47 .58 0
Paulina (2,0,0) .490 .295 .46 .26 1
Abert (1,0,0) .460 .76 .81 0
Lakeview (1,0,0) .770 .40 .99 0
Susanville (1,0,0) .625 .60 .90 0
Peacock (1,0,0) . 487 .75 .26 1
a

b

Ratio of variance of residuals to variance of original series.

See Equation (2.5), p. 17.

cSignificance level of "Q" statistic, defined by Equation (2.7), p. 18.

dNumber of significant autocorrelations of residuals at two-standard-
error level from Equation (A.3) in Appendix A.

e . . . .
Regional precipitation index.
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series. The "Q" statistic [Eq. (2.7)] indicated adequate removal of
autocorrelation for all series except possibly San Gorgonio. A value
of .05 under the SigQ column indicates the chance is only 57 that the
value of Q could have arisen from a random series. The most common
form of model selected by the AIC criterion [Eq. (2.6)] was ARMA
(1,0,0) followed by ARMA (2,0,0).

The preponderance of autoregressive (AR) tree-ring models with
nearly random climatic series suggests that the tree-ring index generally
is aptly viewed as an autoregressive process rather than a moving average
of several years' climate. The distinction is impértant. For example,
assume that two very dry years occur back to back in 1847 and 1848. 1In
a moving average system the climate in both 1847 and 1848 would be
necessary to predict the ring-width deviation in 1848. This information
could not be adequately gleaned from the ring in 1847 and the climate in
1848. 1In an AR system, on the other hand, the effects of the 1847
drought and previous years' climate are condensed into the ring devia-
tion of 1847. The 1847 ring and the 1848 climate are therefore suffi-
cient to predict the ring in 1848. The practical importance of this
result is that reconstruction models that included negatively lagged
tree-ring indices to adjust for persistence are appropriate only under
the AR systems. The fitted models therefore lend support to the use of

negative lags in reconstruction models.

Crosscorrelations
The sample crosscorrelations between prewhitened and rainfall

indices and prewhitened tree-ring indices are plotted in Figure 19
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Figure 19.

Sample Crosscorrelations Between Prewhitened Tree-Ring
Indices and Prewhitened Regional Precipitation Indices —-
Crosscorrelations between the original variables (before
prewhitening) are shown at left for comparison. The two-
standard-error significance level from Equation (2.15b),
page 25, is shown by the dashed line. Periods for
computation were 1901-1963 for the first 8 series (South),
and 1897-1961 for the last 9 series (North).
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along with crosscorrelations between the original variables. Pre-
whitening noticeably increased the size of the lag-zero correlations
relative to correlations at other lags (e;g., Santa Ana, Southern
California, Dufer, and Union). The only significant crosscorrelations
for the prewhitened series by the two-standard-error criterion [Eq.
(2.23)] were at lag zero.

This result implies that the rainfall index in year t affects
future years' tree-ring index only through autocorrelation in the tree-
ring series. In terms of the lagged-response diagram (Figure 6) no
direct influence occurs by pathway b. The random shock concept de-
scribed in Chapter 2 is therefore plausible, and the proposed recon-
struction model using prewhitened variables may be appropriate.

Reconstruction using prewhitened variables was shown in Chapter
2 to differ fundamentally from reconstruction using positively lagged
tree rings as predictors. According to the random shock model, tree
rings in year t+l1l, t+2, ... offer no new information on climate in year
t not available from the tree-ring index in year t adjusted for prior
growth. To test the importance of positive lags, the regional precipi-
tation indices were reconstructed by regression with prewhitened
variables, and by regression with lagged tree-ring models that included

positive lags, and the results were compared.

Regression Analyses

Reconstructions of regional precipitation indices were generated
separately from three tree-ring series in each region. The reconstruc-

tion equations were estimated by multiple linear regression.
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Single-site reconstructions were generated by two methods: regression
with prewhitened variables (PWV model) and regression on lagged tree
rings (LTR model). The procedures for the PWV model were discussed in
Chapter 2 and summarized in Figure 8. The LTR method consisted of re-
gressing the regional precipitation index on the lagged tree-ring index,
where the lags for each tree-ring series were selected from the results
of the transfer-function modeling (Table 6).

The regression equation for the PWV model was given in Equation

(2.27) and is rewritten helow, where the terms are defined as before:

CH B, + brog ¢ (3.8)
The regression equation for the LTR model is
A A I ~ ’
= + .
Yy b0 .Z bs Xt—z. (-9
i=1 i

where
Yt is the predicted regional precipitation index in year t,

Xt is the tree-ring index in year t,

30 is the estimated regression constant,

1’ 32, ces gI are regression coefficients,

o

I is the total number of lagged terms on the tree-ring index Xt
included as predictors, and

1 1 i_ are the particular lags in the model (e.g.,

VAR |
I=3,1,=-1,1

1’

=0, 1, = +1).

1 2 3

Regression equations were estimated with the SPSS (Statistical
Package for the Social Sciences) computer package (Nie et al. 1975).

Computational formulas for summary regression statistics reported here
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can be found in most elementary statistical texts, and are included in

.

Appendix C.
General Results of Single-Site
Regression Analyses

The estimated regression models are summarized in Tables 8 and
9. Accuracy of-prediction as measured by per cent variance explained,
Rz, differed little between the PWV and LTR predictions for four of the
six sites. For Baldwin Lake and Dufer, however, the LTR prediction was
more accurate than the PWV prediction. Not surprisingly, the LTR re-
gression equations for those sites had relatively large weights on
positive lags. The PWV prediction can be expected to differ appreciably
from the LTR prediction in this situation since the prediction of rain-
fall index in year t by the PWV model uses information from the current
and past tree rings only. The R2 results for Dufer and Baldwin Lake
suggest that for those sites, contrary to the random shock concept,
useful information on rainfall in year t does reside in subsequent years'
rings.

The plots of actuai and reconstructed precipitation indices
(Figures 20 and 21) show that the LTR model generally reconstructed
amplitudes of peaks and troughs better than the PWV model: the droughts
centered about 1930 in the North and 1961 in the South are striking
examples. The severity of drought in extremely dry years was also more
accurately reconstructed by the LTR model (e.g., 1959 and 1961 from
Baldwin Lake; and 1929, 1937, 1939, and 1944 for Dufer). The resulting
higher R2 of the LTR predictions was offset, however, by a lack of skill

in in tracking certain high frequency variations in the precipitation
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index. For example, the Dufer LTR model failed to predict the 1927,
1928, and 1938 breaks in the North drought, while the PWV model did
prédict rainfall index above the mean for those years (see Figure 21).

The large LTR prediction errors in some years may be partially
due to the use of positive lags. This can be seen by considering the
Dufer LTR regression equation (Table 10), and the sequence of years
1928-1931. The- Dufer equatioﬁ, which has large positive coefficients on
lags t+l and t+3, would be unlikely to correctly predict a wet year that
immediately preceded an extended severe drought. The North precipita-
tion index was above normal in 1928, but 1929, 1930, and 1931 were all
among the 10 driest years in the 1897-1961 record. Consequently, al-
though the Dufer tree-ring index was near average in 1928, that year was
predicted in drought (see Figure 21) because of the weighting on 1929
and 1931 by the regression equation.

The Baldwin Lake plot (Figure 20) illustrates another poésible
problem with positive lags. Note that the LTR regression equation for
Baldwin (Table 8) has a relatively large weight on t+2, and also that a
major feature of the actual South precipitation index is the sequence of
very dry years 1959, 1961, and 1963. The large regression weight on lag
t+2 may have come about partially because the time series of drought in.
the region had a prominent sequence of severe drought in alternate years.
The regression model therefore may have been largely determined by the
sequence of drought in the calibration period. The long—ierm climate,
however, need not contain similar sequences, and accuracy as measured by
R2 in the calibration period may consequently be a poor indicator of

accuracy in the long-term reconstructions.
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There appears to be a tradeoff ip using positive lags. On the
one haﬁd, positive lags may substantially increase the R2 on the pre-
diction equation because the effects of a rainfall anomaly may indeed be
distributed over two or more rings. On the other hand, reconstructions
for particular years may be thrown off the mark more or less depending
on the sequence of wet and dry years at the site. - Thus when positive
lags are included in the model, and when their regression coefficients
are relatively large, care should be taken in drawing inferences about

drought conditions in particular years from the reconstruction.

Frequency Response

The relationships between the predicted and actual series in
Figures 20 and 21 were studied in more detail with cross-spectral
analysis. The procedures used follow Jenkins and Watts (1968), and the
relevant equations and particular details of application in this study.
are given in Appendix D. Three functions--the gain G(w), phase F(w),
and squared coherency Cz(w)——were used to study‘the frequency response

properties of the system diagrammed below:

ACTUAL RECONSTRUCTED
% Frequency s
*t  Regional Response Regional 7Yt
Precipitation Precipitation

Index Index
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Emphasis was placed on comparing results from regression on prewhitened
variables (PWV models) with those from regression on lagged tree rings
(LTR models).

The gain is analogous to a linear regression coefficient of yt
on x defined at each frequency w (Chatfield 1975, p. 178). The squared
coherency measures the linear correlation between Ve and X, at each
frequency w, and is analogous to the squaré of the correlation coeffi-
cient (Chatfield 1975, p. 177). The phase measures the length of time
that variations at frequency w in Ve either lag behind or lead varia-
tions at the same frequency in X, (Chatfield 1975, p. 177).

A perfect reconstruction (i.e., Ve = X, in the diagram above)

- would be characterized by a gain of one, squared coherency of one, and a
phase of zero at all frequencies. As variations. at frequency w in the
reconstruction differ in magnitude from the variations at frequency w

in the actual precipitation index, the gain will deviate from one; as
such variations at the same frequency in the two series are imperfectly
correlated, the squared coherency will be lower than one; and as such
variations do not match up in time, the phase will vary from zero. The
flatness of the plots of these three functions indicates the evenness of
the response as a function of frequency. Flat gain and coherency
functions are therefore desirable if inferences about frequency proper-
ties of the climatic variable are to be drawn from the long-term recon-
structions.

Plots of the estimated gain, phase, and squared coherency
functions are shown in Figures 22 and 23. The LTR model was better than

the PWV model at all sites in reconstructing low frequency variationms,
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as shown by the relative high values for the gain function at low
frequencies. The LTR reconstructions had higher gain and generally
higher squared coherency than the PWV reconstructions at periods longer
than about 10 years. This result agrees with the earlier observation
that the LTR predictions seemed to reflect the amplitudes of broad
swings above and below the mean more accurately than the PWV predictions
(Figures 20 and 21). Largely because of this difference in gain at low
frequencies, the PWV models gave flatter frequency responses than the
LTR models.

At high frequencies, the difference between LTR and PWV re-
sponses was muéh less pronounced and less consistent from site to site.
For some sites the LTR model gave a slightly better (higher gain,
squared coherency) response, for others the PWV gave better response.
The largest differences at high frequencies were for Dufer and Baldwin
Lake, where the LTR coherencies were higher than the PWV coherencies.
In addition, the LTR gain was considerably higher than the PWV gain at
high frequences for Baldwin Lake. The only three significant (at the
90% level) phase estimates were also found at high frequencies in the
Dufer plot.

The Dufer and Baldwin Lake resulté at high frequencies probably
reflect the superiority of the LTR model in reconstructing years of
extreme drought or wetness. This tendency was pointed out earlier re-
garding 1959 and 1961 in Baldwin Lake's reconstruction (see Figure 20).
The positive lags.may give the LTR model an advantage in extremely dry
years, when effects such as defoliation and root dieback are likely to

be most pronounced.
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For the Southern California and Peacock Canyon sites, the model
choice made little difference to the frequency response. The LTIR and
PWV squared-coherency plots were virtually indistinguishable from one
another, and the PWV gain plots were only slightly flatter than the LTR
gain plots. The relative insensitivity of these sites to model choice
may be explained by the estimated impulse response weights (Figure
16). These sites had the largest lag-zero weights--considerably
higher than the weights on any non-zero lags. The lag structure is
likely to be relatively unimportant in reconstructions for such sites -
because the bulk of the information on climate in year t is in the ring .
for year t.

In summary, the frequency response analysis indicates that the
PWV model gives a flatter frequency response than the LTR model, but
that the LTR model more accurately reconstructs low frequencies and very
dry years. The question in selecting one method over another is whether
it is preferable to have a reconstruction which accurately reflects the
spectral properties of the actual data, but which has a larger noise
component, or a reconstruction which emphasizes some frequencies more
than others, but wﬁich has a smaller noise component. For some series,
the choice of reconstruction method makes an appreéiable difference to
the resulting predictions. A diagnostic analysis of the lagged responses
of individual tree-ring series by transfer-function modeling and ARMA
modeling can aid in identifying series for which the model choice will
make an appreciable difference.

The comparison of the LTR and PWV models has so far been re-

stricted to analyses of accuracy in the calibration method., Such
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comparisons may mistakenly favor the LTR model because of the possible
problem of calibrating fhe regression model to the particular sequence
of drought in that period. In other words, a large weight on, say, year
t+2 is favored by two circumstances: (1) climate in year t affects

;ing width in year t+2, and (2) climate in year t is correlated with
climate in year t+2. The second circumstance acts to obscure the

time lag in response. Verification on data outside the calibration
period is therefore desirable. Before carrying out this analysis,

however, the single-site reconstructions were averaged together to form

mean regional LTR and PWV reconstructions.

Mean Reconstructions

The precipitation index was reconstructed separately from indi-
vidual tree-ring sites in this study to stress thg temporal-filtering
agpect of the reconstruction equation. This approach would not
generally be appropriate when the objective is the most accurate o
possible reconstruction, because no use is made of the covariance of the
tree-ring data in space.. A single~site reconstruction is thus likely
to unnecessarily contain small-scale noise, while a reconstruction
using tree-ring data from several sites is likely to better emphasize
the general regional climatic signal. Several different methods of
spatial weighting in reconstruction equations were mentioned in Chapter
1. Before evaluating the long-term reconstructions, an attempt was made
to reduce the localized noise by simple averaging of the single-site
reconstructions into regional mean reconstructions. The procedure

consisted of the following steps.
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1. The 3 single-site reconstructions were averaged together.

2. The correlation coefficient was computed between the resulting
averaged series and the actual regional precipitation index.

3. The variance in the averaged series was re-scaled by multiplying
the averaged series by the quantity rzi, where r is the
correlation coefficient between the average reconstruction and
the actual series, S is the standard deviation of the actual
precipitation index, and Sy is the standard deviation of the
averaged series.

A mean PWV reconstruction and LTR reconstruction were generated for each

region. The rescaling factors for the mean series are listed in Table

10.
Table 10. Rescaling Factors for Mean Regional Reconstructions —-- Terms
are defined as above. '

' a Rescaling
Region Model T 81 s, Factor
South LTR .766 .915 .531 1.32
South PWV .753 .490 1.41
North LTR .718 .826 .393 1.51
North PWV .699 .313 1.76

aLagged tree-ring (LTR) or prewhitened-variable (PWV) reconstruction.



105

Accuracy of Mean Reconstructions

Calibration Period. The mean regional reconstructions for the

periods covered by precipitation records at one or more of the weather
stations used in this study are shown in Figures 24 and 25. The actual
regional precipitation indices for the calibration period, and pre-
cipitation indices from available data for earlier yedrs are ‘also shown..
The accuracy of predictidn increased from the single-site reconstructions
to the mean reconstructions (Table 11). By the R2 criterion, the South
reconstructions were more accurate than the North, and the lagged tree
ring (LTR) reconstructions were more accurate than the prewhitened
variables (PWV) reconstructions, although the difference between models
for the South was very small.

The time series plots in Figures 24 and 25 show that extremely
wet years were not reconstructed well. A contingency table summary of
accuracy of predicting in various precipitation classes in the South
especially supports this observation (Figure 26). Only 3 of the 12
wettest years in the South were correctly ﬁredicted by the LTR and PWV
reconstructions; in contrast, 7 of the 12 driest years were correctly
predicted by the LTR model, and 8 by the PWV model. A similar asym-
metry, though much less striking, is found in the North. The lower
accuracy in very wet years may reflect a tailing off in the trees’
response to additional moisture under very wet conditions.

The inability to reconstruct very wet years caused the co-
efficients of skew of the reconstructed and actual data to differ

appreciably in the South, as shown below.
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Table 11. Decimel Fraction of Variance Explained (Rz) by Single-Site
Reconstructions and Mean Regional Reconstructions —— R is
the correlation coefficient between the actual Regional
Precipitation Index and the reconstructions. Computation
periods are 1901-1963 in the South (top 4 series) and 1897-
1961 in the North (bottom four series).

R R2
. L a b

Site LTR PWV LTR PWV
Santa Ana .61 .58 .37 .34
Baldwin Lake .66 .61 44 .37
S. California .73 .72 .53 .52
Mean South ' .77 .75 .59 .57
Dufer .60 41 .36 .17
Paulina .55 .49 .30 .24
Peacock .61 .60 .38 .36
Mean North .72 .67 .51 .45

aLagged tree-rings models.

bPrewhitened-variables models.
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Contingency Table Summary of Accuracy of Reconstructions in
Various Precipitation Classes — Series analyzed were
regional mean precipitation indices in the South and North

regions reconstructed by the lagged-tree-ring model (A),

and the prewhitened-variables model (B).

North.

Classes were

selected to contain roughly equal numbers of years based
on the actual regional precipitation index.
analysis were 1901-1963 in the South and 1897-1961 in the

Periods for
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Reconstructed
Actual LTR PWV
South .81 -.69 -.65
1901-1961
North .38 -.03 .30
1901-1961

One possible way of reducing this problem is to calibrate on precipita-
tion series that are less skewed, perhaps from higher elevation weather
stations. Anothgr is to transform the precipitation series with a log
transform before calibrating with tree rings. This last approach has
the offsetting drawbacks of providing'é least-squares prediction of the
log data rather than the original precipitation data, and of assuming
that the nonlinearity in response is characteristic of the entire range
of precipitation, rather than just at very wet conditionms.

Tables 12 and 13 summarize the accuracy of reconstructing
extreme droughts. The reconstructions in the South were able to resolve
individual years of extreme drought, although not too much importance
should be attached to the differences in severity of reconstructed
drough in these years, as the ranking of the actual data is not exactly
duplicated by the reconstructions. Four of the five driest years in the
South were also among the five driest reconstructed years by both-the
LTR and PWV models., The fifth driest year in the actual data--1904--was
seventh driest in both reconstructions,

Comparison of the magnitudes of extreme droughts were more re-
liable when the reconstructions were interpreted as moving averages of 3

or more years. The driest three-year averages in the LTR reconstruction
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Table 12. Most Severe Reconstructed and Actual Droughi: in the
Calibration Period in the South.
Reconstructed
LTR? PWVP Actual
Moving p.
Ave. Rank Year Index Year Index Year Index
1 year 1 1959 -1.94 1961 -1.74 1961 -1.76
2 1961 -1.91 1959 -1.69 1959 -1.44
3 1951 -1.28 1951 -1.39 1963 -1.29
4 1963 -1.28 1934 -1.20 1904 -1.12
5 1934 -.97 1963 -1.15 1934 -.99
3 years 1 1961 -1.43 1961 -1.25 1961 -1.34
2 1963 ~-1.04 1963 -.85 1963 -~1.00
3 1962 -.76 1951 -.71 1962 -.84
4 1951 -.76 1949 -.59 1948 -.84
10 years 1 1963 -.58 1963 -.42 1963 -.61

8Reconstructed by lagged-tree~ring model.

bReconstructed by prewhitened~variable model.

c . . .
Year listed is last year of moving average.
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Table 13. Most Severe Reconstructed and Actual Droughts in the
Calibration Period in the North —— Remainder of legend as
in Table 12.
Reconstructed
LTR PWV Actual
Moving
Ave. Rank Year Index Year Index Year Index
1 year 1 1929 -1.41 1929 -1.15 1939 -1.54
2 1930 -1.02 1930 -.85 1924 -1.44
3 1924 -.94 1934 -.84 1929 -1.43
4 1926 -.93 1933 -.82 1944 -1.37
5 1922 -.87 1922 -.76 1937 -1.25
3 years 1 1931 -1.07 1931 -.87 1931 -1.15
2 1930 -.93 1934 -.76 1939 -.96
3 1932 -.83 1932 -.69 1926 -.90
4 1934 -.77 1933 -.68 1937 -.84
10 years 1 1935 -.78 1935 -.61 1939 -.66
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ranked exactly as the actual data. Both the PWV and the LTR reconstruc-
tions also show correctly that 1954-1963 was the driest decade.

The North reconstructions were less. accurate than the South in
pinpointing extremely dry years. Only two of the 5 dries£ years in the
North were among the 5 driest reconstructed years. The driest year in
the actual data--1939--ranked ninth driest in the LTR reconstruction and
sixth driest in the PWV reconstruction. As in the South, identification
of extreme droughts improved when longer periods were considered.

The year 1934 in the North illustrates an interesting aspect of
the "noise." The PWV model reconstructed 1934 as the third driest year
in the 1897-1961 calibration period, and the LTR model reconstructed it
ninth driest. The year 1934 ranked only twenty-first, however, in the
actual data. The discrepancy is probably due to the effect on the trees
of the extremely high temperatures in 1934: the mean annual (September-
August) temperature was highest on record for Walla Walla, Hood River,
and Baker. The high temperature probably affected growth more than did
moisture. In other words, excessively high temperatures probably caused
reduced growth so that the reconstructed "drought'" was more severe than
that recorded by the precipitation record. The heat wave of 1934 is a
well-known, large-scale climatic anomaly in the western United States,
but for the purposes of this study, becomes just another element of the

disturbances lumped together as noise.

Independent Verification. The segments of the actual time

series of the precipitation index before the calibration period allow

verification of the reconstructions on data not used in calibration.
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Ideally, the independent data are an extension of the time series of the
same variable used in calibration, and cover a period as long as the
calibration period. Because of the shortness of available climatic
series, these two conditions are not satisfied in this study. The
verification series are precipitation indices computed from subsets of
the stations forming the calibration series. For example, verification
back to 1851 in the South relies solely on the San Diego record. "The
longest independent data set in the South is 50 years (1851-1900), and
23 years (1874-1896) in the North; the corresponding calibration periods
are longer than 60 years. With these qualifications injmind, the inde-
pendent data plotted in Figures 24 and 25 were compared to the recon-
structions. |

The South plots (Figure 24) show little noticeable decrease in
accuracy from the calibration period to the independent data, and,
except for the extremely wet years 1884 and 1890, excellent matchup for
the years from about 1865 on. Note that the verification precipitation
indices in Figﬁre 24 comprise fewer climatic stations than the
calibration-period precipitation index. A simple measure of independent
verification is the correlation coefficient r between the verification
series and the reconstructed index. An appreciable decrease in r from
the calibration period to the independent~check period may indicate that
the R2 for regression overestimates the expected accuracy of long-term
reconstructions. Correlation coefficients between the reconstructions
and verification series are listed in Tables 14 and 15.

Correlation coefficients in the South decreased very little or

not at all from the calibration period to the independent-check periods,
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Table 14. Correlation Coefficients Between Reconstructions and

Independent? Data in South Region.

Regional 3-Station” San Diego

Actual Index Index Index
Recon-
struction 1901-1963 1883-1900 1901-1963 1851-1900 1901-1963
South LTR .77 .75 .77 .58 .66
South PWV .75 .80 .75 .62 .66

a . . c . s e

Correlation with calibration series is also given in first column for
comparison. This value is the square root of R from regression (see
Appendix C).

bComputed as the regional index was, but from fewer stations. Stations
for 3-station index were Riverside, San Diego, and Los Angeles.

Table 15. Correlation Coefficients Between Reconstructions and
Independenta Data in North Region.
Regional 2—Stationb Walla-Walla
Actual Index Index Index
Recon-

struction 1897-1961 1885-1896 1897-1961 1874-1896 1897-1961
North LTR .71 .71 .66 ‘ .49 .66
North PWV .67 .64 .62 .54 .63

8As in Table 14.

As in Table 14 except stations are Walla Walla, Washington and Hood
River, Oregon.
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indicating that the South regression statistics are probably reliable
measures of reconstruction accuracy. The independent data check in the
North (Figure 25, Table 15) was far less encouraging than in the South.
Most notable was the large dropoff in Walla Wallais correlation with the
LTR reconstruction from the calibration period to the 1874-1896 period.

Since the correlation coefficient is independent of mean levels

"and scale of variation, verification by correlation coefficient must be

supplemented by information on accuracy of reconstruction of mean levels
and variance or standard deviation. The calibration R2 is verified on
independent data only if (1) the correlation coefficient between actual
and reconstructed data does not decrease appreciably from the calibra-
tion to the independent data, (2) the mean level is reconstructed well
in the independent period, and (3) the ratio of variance of reconstructed
data to variance of actual data is about the same in the calibration
period and the independent period.

The relevant means and standard deviations for the South recon-
structions (Table 16) do not appear to invalidate the results suggested
by the correlation coefficients in Table 14. The means for the actual
San Diego precipitation index are approximately equal to the recon-
structed means in the independent-check period, and the ratio of the
standard deviation of the reconstruction to the standard deviation of
the San Diego series actually increases from the calibration period to
the independent-check period (from .70 to .80 for the LTR model and from
.74 to .86 for the PWV model).

The ratios of standard deviations in the North similarly change

little from the calibration period to the independent-check period, but
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Table 16. Means and Standard Deviation Ratios for San Diego Verifica-
tion -- Series are South mean regional reconstructions by LTR
and PWV models, and actual precipitation index for San Diego.
Ratio; is ratio of standard deviation of LTR reconstruction
to standard deviation of San Diego index for period 1901-
1963. Ratiop is same for period 1851-1900.

Series Mean Ratiog Ratiogp

LTR -.13 - .70 .80

PWV -.09 .74 .86
San Diego ' -.09

the mean level appears to have been reconstructed too low (Table 17).
The shortness of the independent period (1974-1896), however, makes it
difficult to draw conclusions from this result: although the actual
Walla Walla mean was .35, the standard error of the mean was .28.
Nevertheless, this result suggests that the North verification is even
poorer than indicated by the dropoff in r in Table 15.

The poor verificétion in the North may be due to the general
wetness of the entire independent data period, 1874-1896. In fact, the
two peaks in the plots of actual data (Figure 23) in 1877 and 1894
represent the two wettest September~August rainfall totals in the 1874-
1978 record at Walla Walla. These conditions would probably lead to a
relatively weak relationship between tree-ring indices and precipitation
fluctuations in the 1874-1896 period, considering the difficulty of

reconstructing extreme wetness from tree rings. The best solution to
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Table 17. Means and Standard Deviation Ratios for Walla Walla Verifica-

tion —— Ratioj and Ratioj are defined as in Table 16, except
that Ratio; refers to period 1897-1961 and Ratiop to period
1874-1896.

Series Mean Ratiog Ratio)p
LTR .118 .49 .50
PWV .132 .45 .45

Walla Walla .351.

the problem is probably to update the tree-ring data so that a longer,
more representative period could be held back for independent check.
Interestingly, in the North and the South, the PWV reconstruc-
tion correlated higher than the LTR reconstruction with the longest
independent data series. In addition, the PWV model reconstructed the
mean levels in the independent period more accurately than the LTR
models (Tables 16 and 17). These results contradict the implication
given by thé calibration period values of R2 than the LTR is superiot to
the PWV model. This reversal in model accuracy may be due to the
problem mentioned -earlier of calibration of the LTR model to the
particular sequence of wet and dry years in the calibration period.

Major Features of Long-Term
Reconstructions

Effects of Choice of Model. The long-term time series of the
mean regional reconstructions are plotted in Figure 27. The noticeable

differences due to type of reconstruction model are small, especially in
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the South. The correlation coefficient is .90 between the two North
reconstructions and .97 between the two South reconstructions. The two
North reconstructions differ occasionally in the sizes of peaks, high-
frequency features, and deepness of some extended droughts (e.g.,
1930's, 1840's). The reasons for these differences were discussed
earlier regarding the single-site reconstructions. In the South, the
two pldts in Figure 27 are so similar that it is difficult to pick out
differences by eye. The following discussion will refer to LTR recon-

structions unless noted otherwise.

North-South Contrasts. The North-South differences in Figure 27

are striking. Periods of drought or wetness in the two regions do not
coincide; this is true both for individual years and for extended dry or
wet periods. The correlation coefficients between North and South re-

constructions for different periods are as follows:

1897-1961 -.109
1832-1896 -.106
1767-1831 -.015
1702-1766 +.144
1673-1961 -.027

‘For comparison, the correlation coefficient between the actual precipi-
tation indices in the two regions for the 1897-1961 period is .Odl.
There is no evidence, therefore, of coupling of precipitation anomalies
in the two regions.

The lack of coherence of drought between the two regions is
shown more clearly in Figure 28, which delineates the 10 driest periods
in the regions in terms of moving averages of the reconstructed precipi-

tation index. Only in the mid-1840's, when the South was just pulling
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out of a drought and the North was entering a drought, did droughts

overlap.

Reconstructed Drought History in the South. Figure 28 indicates

that the droughts centered around 1900 and 1961 were outstanding in the
context of the past several hundred years. The worst droughts of the
calibration period 1901-1963 are compared_with those of the entire 1612-
1964 record in Tables 18 and 19. Two droughts—-1959-1961 and 1895-
1904--within the last hundred years were apparently representative of
the worst droughts to hit the South region since 1612. The only 10-year
period reconstructed drier than 1895-1904 was 1662-1671. Some historical
evidence for a drought around 1670 is found in written records kept by
missionaries, which indicate that the Pueblo Indians in New Mexico
suffered greatly at this time. A great famine killed off half the
population of the Indian village of Tesque, near Santa Fe in 1670

(Page 1980).

The general downward trend in rainfall (Figure 24) culminating
in the severe drought of the early 1960's might tempt a hypothesis of
changing climate in the Southwest. The long-term reconstruction does
not seem to justify this hypothesis, however. Similar trends have
occurred in the past, and the single-year extremes injl96l or 1959 have
been surpassed in the long-term record. Most important, the actual
precipitation index (Figure 24) swung upward after 1961, and

eventually reached a wet peak in 1978.

Reconstructed Drought History of the North. The long drought

- centered around 1930 is a conspicuous feature both in the actual data
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Table 18. Worst Droughts in Long~Term Reconstruction in the South
Region Compared to Worst Droughts in 1901-1963,

Driest Driest
Moving 1901-1963 1615-1964
a
Ave 5 N 5

(years) Model Year Index 1615-1964 Year Index
1 LTR 1959 -1.94 4 1841 -2.49
) PWV 1961 -1.74 11 1841 -2.81
3 LTR 1961 -1.43 0 1961 -1.43
PWV 1961 -1.25 0 1961 -1.25
10 LTR 1963 -.58 9 1671 -.71
PWV 1963 -.42 15 1671 -.59

Number of years in the period 1615-1964 that were drier than the driest
year in the period 1901-1963.

Year given is last year of sequence for moving averages.

Table 19. Worst Droughts in Long-Term Reconstruction in the North
Region Compared to Worst Droughts in the Period 1897-1961.

Driest Driest
Moving 1897-1961 a 1673-1961
Ave 5 N

(years) Model Year Index 1673-1961 Year Index
1 LTR 1929 -1.41 5 1721 -1.67
PWV 1929 -1.15 6 1721 -2.20
3 LTR 1931 -1.07 3 1848 -1.35
PWV 1931 -.87 6 1721 -1.28
10 LTR 1935 -.78 0 1935 -.78

PWV 1935 -.61 0 1935 -.61

@Number of years in period 1673-1961 that are drier than the driest year
in period 1897-1961.

b ; . .
Year given is last year of sequence for moving averages.
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(Figure 25) and in the long-term reconstruction (Figure 27), The
drought is most notable for its duration rather than for severity in
individual years. A more intense drought occurred in the 184Q's; three
of the 10 driest years of the entire reconstruction were 1846, 1847, and
1848.

Table 19 indicates that the 184Q's and 1936'8 droughts dominated
the drought history of the North region. Both droughts included at
least one extremely dry year: 1929 was the sixth driest of the LTR
reconstruction, and 1847 was the seventh driest. Both droughts were
also long-lasting: the four driest 10~year moving averages were in the
193Q's, and the fifth driest was 1842<1851,

The reconstructions support a conclusion arrived at by Keen
(1937, p. 184) in a study of tree stumps from logging operations in
eastern Oregon:

The tree~ring reéord shows that between 1839 and 1854, when

the emigrant trains were trekking inte Oregon, the country was
suffering frem severe drought. Evidently, Goose Lake, Harney
Lake, and many other lakes in the region were dry at that time,
for when Goose Lake dried up in 1925 for the first time in the
memory of present settlers, the ruts of a wagon road were
clearly seen crossing the bed of the lake, indicating that in
the 1840's there was no water in this lake to impede the
progress of the early settlers. The tree-ring record indicates
that this was undoubtedly the case, for the depression of
growth rate during the 1840's and early 1850's was almost as
seyere as the present one.

The great 1930's drought was nearing its end at the time of
Keen's writing (see Figure 23). Wetter conditions returned after 1939,

and drought did not return through the end of the period covered by

the tree-~ring data in this study. Extreme drought hit the region again
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in 1973 and 1977, when the precipitation index was lower than in any
other year in the 1897-1961 calibration period (see Figure 23).

The 1977 drought has been studied with great interest (Namias
1978, Buchanan and Gilbert 1977, Shelton 1978, and others) because of
its effect on water supply. A rough estimate of the historical signifi-
cance of the 1977 drought can be gained by comparing the precipitation
index for that year (-2.02) with the index for the driest reconstructed
years. Both the LTR aﬁd the PWV reconstructions showed 1721 as the

driest year, but the reconstructed values differed:

LTR model PWV model Actual
1721 -.1.67 -2.20 -

1977 - - -2.02

Even adopting the PWV value as representative of the driest
conditions, 1977 would appear to approximate the worst single-year
drought since 1673. Future tree-ring collections covering the year

1977 are needed for a more definite conclusion.



CHAPTER 4
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Nonclimatic persistence in treg rings can lead to errors in
reconstructions of annual climatic or hydrologic time series. Non-
climatic persistence can be properly adjusted for only if the lagged
response of each tree-ring series to the variable to be reconstructed
is understood.

Box—Jengins methods can effectively be used to study the lagged
response, and to select an appropriate lagging scheme for a reconstruc-
tion model. The number of past rings, or negative lags, in the recon-
struction model can be selected by transfer-function modeling, assuming
a linear system in which the climate or hydrologic series is regarded as
input and the tree-ring index as output. The estimated impulse-response
function of the system indicates the relative importance of past years'
climate to the current ring; the decay pattern of the impulse response
weights allows dependence on past year's climate to be reformulated as
dependence on past years' tree-ring index. The lagged relationship can
be further clarified by autoregressive-moving-average (ARMA) modeling.
The crosscorrelations between residuals from ARMA models fit to the
climatic or hydrologic series and the tree-ring index give the lagged
relationship minus the possible masking effects of autocorrelation in
the individual series. These crosscorrelations can be used to screen

126
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out insensitive tree-ring series, and to select positive lags for the
reconstruction model.

Transfer—function analysis of tree-ring indices and regional
precipitation indices revealed at least two distinct forms of dependence
on past years' rainfall. In the first form, dependence dropped off
roughly as a simple exponentiél with time. The implied reconstruction
model included the tree-ring index lagged t~l to adjust for past years'
climate. In the second form, dependence did not drop off as a simple
exponential, but in a pattern resembling a damped sine wave or a mixture
of éxponentials. The implied reconstruction model included tree-ring
indices lagged t-1 and t~2 to adjust for pastryeast climate. Climatic-
ally sensitive tree-ring series were represented by both forﬁs. Tﬁe
general implication of this result is that the lagged response may vary
from site to site, so that wholesale treatment of tree-ring indices by
a single lagged model is inappropriate.

A useful conceptual mode1<of the tree-ring response is that
random shocks of climate deviations induce random shocks of tree-ring
index deviations, with autocorrelation in the tree-ring index resulting
from inertia in the system. The model was supported by the results of
the crosscorrelation analysis on prewhitened series: when autocorrela-
tion was removed from the rainfall index and the tree-ring indices, no
lag was indicated in the response. The following reconstruction pro-
cedure consistent with the random-shock concept was devised.

1. The climate variable Ve and the tree-ring index X, for a common
period are fit to ARMA models. The residuals, or the prewhitened

series from the models, represent the random shocks.
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2. fhe prewhitened.yt is regressed against prewhitened X, - No
lags are included in the regression.
3. The prewhitened Ve is reconstructed by substituting the long
term record of prewhitened X, into the regression equation.
4. Aupocorrelation is built back into the reconstruction with the

original ARMA model used to prewhiten Vi-

Tree rings for years after year t do not enter explicity or im-
plicitly into the reconstruction for year t by this method when the ARMA
models are pure autoregressive, as for all the trial series. The
method tﬁerefore differs inherently from reconstruction models that
include positively lagged tree ring as predictors. Trial regressions
and reconstructions by the proposed method (PWV model) and by a model
using positively lagged tree rings (LTR model) indicated that each model
has its advantages and disadvantages. The LTR model generally yielded a
higher per cent variance explained (Rz) in calibration than the PWV
model. This higher R2 was manifested by more accurate reconstruction of
the depths of'troughs and peaks (low frequency variation), and of the
intensity of dryness in very dry years.

On the other hand, the PWV model has a more even frequency
response than the LTR model; the PWV model may therefore be preferable
when spectral properties of the reconstructed climatic or hydrologic
variable are'Of interest. 1In addition, the PWV model performed much
better relative to the LTR model on independent data than on calibration-
period data. This result may be due to calibration of the LTR model to

the particular sequence of wet and dry years in the calibration period.
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If so, the calibration statistics of the LTR model may be misleading as
indicators of expected accuracy of long-term reconstructions. The PWV
model may therefore yield leas impressive calibration statistics, yet
more reliable reconstructions than the LTR model.

Although emphasis in this study was on methods, the resulting
long-term mean regional reconstructions were interesting in themselves
for their implications on the drought history of the South and North
regions. Droughts in the two regions did not tend to coincide. The
worst droughts since 1615 in the South were centered around 1665 and
1960. The unusual proximity of the two extremely dry years 1959 and.
1961 caused the period 1959-1961 to be the driest 3-year moving average
in the reconstructeé series. The 1660's drought, on the other hand, was
notable for its extent: the driest 10-year moving average of the South
reconstruction was 1669-1671.

The drought history of the North was dominated by the droughts
centered around 1847 and 1930. The years 1846, 1847, and 1848 were all
among the 10 driesf years of the North (LTR) reconstruction. The
49ers' bleak perception of the area at that time may therefore have been
justified. The drought centered about 1930 was exceptional for its
combined persistence and intensity. Seven of the ten driest 10-year
moving averages of the North reconstruction overlapped the year 1935.
Though 1977 was outside the period covered by the tree-ring reconstruc-
tion, comparison of the actual precipitation index for 1977 with the
long-term reconstructions indicated that 1977 was possibly the driest

single year since at least 1673.
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Recommendations

The accuracy of the regional reconstruction could probably be
improved with additional tree ring collections. A denser spatial grid
of climatically sensitive sites in each region, especially the North,
would provide more representative sampling of the regional climatic
signal. In addition, the 15 to 20 years addiéional tree-ring data would
allow either for longer calibration periods or longer independent
verification. Tree-ring data for recent years would also allow the
1976-1977 drought to be viewed in the context of the past several
hundred years more accurately than was possible with the present data
base.

The effects of annual, large scale fluctuations of climate
variables other than precipitation on tree rings should be studied.

The reconstruction for 1934 in the North pointed out that precipitation
along may be inadequate as a measure of drought stress on the trees, at
least in some years. One possible approach is to recomstruct precipi-
tation, and compare the time series of reconstruction residuals, or
errors, to large scale anomaly patterns in various components of the
energy balance--temperature, relative humidity, solar radiation, and
wind speed. Even if this approach does not yield an optimum drought
variable for calibration with tree rings, it may provide insight into
the sources of errors in reconstructions.

Considerable work remains to be done on the problem of departure
from non-linearity of the tree rings' response to moisture under very
wet éonditions. The accuracy in reconstructing extremely wet years

could possibly be improved by calibrating with less positively skewed,
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higher elevation precipitation series more representative of the rain;
fall received by the trees, or with annual streamflow. Even these
measures may not be sufficient, however, when the error in wet years is
due to nonlinearity in the trees' response to moisture. Is the
typical response linear up to some moisture level and nonlinear beyond,
or is it nonlinear over the entire range of moisﬁure conditions? How
does this deviation from linearity vary from one location to another?
Can nonlinearity be dealt with effectively by log-transforming the
climate or hydrologic data? These questions are all important because
nonlinearity limits the usefulness of methods such as those used in this
study, which assume a linear system.

Transfer-function modeling should be applied to tfee—ring
systems using different types of input series. For example, for upper
tree-line sites, mean annual temperature could serve as input; or for
large watersheds, annual streamflow would serve as input. Transfer-
function modeling would be especially applicable to these systems since
the input variables may be appreciably autocorrelated. Seasonal rather

than annual climatic inputs may also be appropriate for some series.

Extension to Large—-Scale Studies

To focus on the lag in response of tree rings to climate, this
study deferred consideration of spatial covariance among tree-ring sites
until the step of averaging single-site reconstructions into regional
mean reconstructions. Most modern tree-ring studies (see Chapter 1),
on the other hand, emphasize spatial covariance much more strongly, and

treat it more elaborately than by simple averaging.
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The described methods can be adapted to such studies by Ereaking
the reconstruction problem down into the sequential steps of filtering
in time followed by filtering in space. Single-site reconstructions are
nothing more than a time-filtered tree-ring index, where the filter is
designed to amplify the annual climatic signal. For large-scale
reconstructions using a grid of tree-ring sites, the time filtering
could be accomplished for individual treefring series by single-site
reconstruction of some regional climate variable, and the remainder of
the large-scale reconstruction model could be done as before. The only
changes are therefore as follows.

1. The original tree-ring indices are replaced with the time-
filtered series (single-site reconstruction).

2. The lags are omitted from the large-scale reconstruction model.

Whether this approach is practical for any particular study
depends on the resources available, since the single-site reconstructing
requires transfer-function analysis and ARMA modeling of each tree-ring
series separately. The extra effort, however, must be weighed against
the increased understanding of the lagged response of the data and the

possibility of more reliable long-term reconstructions.



APPENDIX A

COMPUTATION FORMULAS FOR AUTOCORRELATIONS
AND CROSSCORRELATIONS
Formulas for the sample autocovariance, autocorrelation,
cross—-covariance, and crosscorrelation are given in this appendix,
along with formulas for the corresponding variances which may be used

to set confidence limits on the :sample functions.

Sample Autocovariance and Autocorrelation

The sample autocovariance cx(k) of time series xt at lag k is

given by N-k

1 _ _
Cx (k) = Y-k tzl (Xt—x) (Xt+k -X) (A.1)

where N is the sample size, and x is the sample mean (Chatfield 1975,

p- 25). The sample autocorrelation rx(k) is given by
rx(k) = cx(k) /cx(O) (A.2)

where cx(k) and cx(O) are as in Equation (A.1) (Chatfield 1975, p. 25).

Variance of Autocorrelations

The variance of the estimated autocorrelation at lag k is

given by X

Varlr ()] =2 a+2 = 2@y, (4..3)
X N . X
i=1
where terms are defined as in Equations (A.1) and (A.2), and the

theoretical autocorrelations beyond lag k are deemed to have 'died out"

(Box and Jenkins 1976, p. 35).
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Box and Pierce (1970) show that Equation (A.3) may greatly
overestimate variances when the autocorrelations are of the residuals

from an ARMA (p,q) model

X X el cbpxt_p =a - elat—l - = ant_q (A.4)

where
X, = time series (mean subtracted),
a, = ARMA residuals,

.p>q = autoregressive and moving average orders of the model, and

¢l,¢2 cen ¢P,61,62 .o Gq are the model parameters.

If (A.4) is rewritten in infinite moving average form

T LR T O e e S (A.5)

where the ¥ weights die out quickly, the variances of the sample auto-

correlations of a_ are given approximately by

Varlr_(1)] = % T-a, (A.6)

where N is the sample size, T is the identity matrix of rank ptq, and
[‘f—a]k is the kfh diagonal element of the array [.f-‘(_f]. The array
Q in Equation (A.6) is computed from the y weights of Equation (A.5)
by the formula

Q= 3@t (A.7)

where Y is the p+q column matrix:
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Y = l'bm b (A.8)
wl
L

The wi weights are assumed to be negligible for all j > some m.

Sample Cross—Covariance and Crosscorrelation

The sample cross-covariance Covxy(k) between time series X, and
Ve at lag k is given by

N-k

l p— —
N E (xt-x) (yt+k—Y)s k = 0919 ey N-1
t=1
Cov._ (k) = (A.9)
Xy N
1 — —
N z (X “X) (Y '-Y) > k= "'ls "29 LY "(N—l)
N t=1-k t t+k

where N is the sample size, and x and §.are the sample means (Chatfield

1975, p. 173).

The sample crosscorrelations rxy(k) are given by

rxy(k) = Covxy(k)// CX(O) . Cy(O) (A.10)

where CX(O) and Cy(O) are defined in Equation (A:1) (Chatfield 1975,

p. 137.
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Variance of Crosscorrelations

The variances of the sample crosscorrelations depend on the
sample autocorrelations of the two component series. If the two series

X, and Ve are white noise, the variances may be estimated by

~ 1
Var[rxy(k)] N (A.11)

where N is the sample size (Chatfield 1975, p. 173).

If either series is not white noise, the variance is given by
1 oo

—— I [r ({)r ({)+r. (k+i) - r (k-1i)

N-k jm—o0 X y Xy Xy

Var[rxy(k)]—
+ o G {xl (1) +3, (@) +31, ()

(A.12)
- 2rxy(k) {rx(i)rXy (i+k) +rxy(—i)ry(i+k)}]

where N is the sample size, and rxy(i), rx(i), ry(i) are defined as in
Equations (A.2) and (A.10). In practice, the sample autocorrelations
and crosscorrelations are first computed, inspected, and assumed to be
nonzero only over some small range of lags, so that the summation in

Equation (A.12) is finite.



APPENDIX B

BACKWARD SHIFT NOTATION

Extensive use is made of backward shift notation (Box and
Jenkins 1976, p. 8) in this paper. The notation is convenient for de-

scribing linear operations in a condensed form.

Backward Shift Operator

The backward shift operator B .is defined by

th=xt_1, Bzxt=xt_2, cee le = x_ . (B.1)

where X, is a time series (mean subtracted).

Autoregressive Operator

The autoregressive operator ¢(B) of order p is defined as

¢(B) = 1-¢;B - ¢232 - ... - ¢P8P | (8.2)

. 2
where 17 20 2t o are the autoregressive parameters, and B, B",

BP are defined as in Equation (B.1l). The operator ¢(B) applied

oo o .

to time series X, yields
qb(B)?gt = xt-—¢1 xt_l-¢2 Xpg = eoe = ¢p xt—p (B.3)

Moving Average Operator

The moving average (MA) operator O(B) of order q is defined as
6(B) =1- 6B- 68 - ...-0 8 (B.4)
1 2 .. q
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where 61,.6

PYEREEEE eq are the moving average parameters. The operators

®(B) and 6(B) are used together to represent the general ARMA (p,q)

model:

fb(B)xt = G(B)at, (A.5)

or equivalently,

X, - d)lxt-l - . - ¢pxt—p fat - elat_l — e - qat—q (A.6)
where a, are the ARMA residuals, and other terms are defined as in
Equations (A.3) and (A.4).

Transfer-Function Operators

Transfer-function modeling makes use of an input operator.
, _ s

w(B) = wy = wlB - .. mSB , (A.7)
and an output operator

§(B) =1 - 6B - 6B - ... - 6B (A.8)

1 2 T

such that the transfer function

Ve~ élyt-—l —ee. - aryt-r = WpX WX T e WX (A.9)

can be written in the condensed form
6(B)yt = (})(B)xt (A.10)
Impulse Response Operator
The impulse response operator
V(B) =v,. +v.B+v B2 + ... (A.11)

0 1 2

allows the general linear input-output system
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0
yt = .Z vixt—i.+ Nt : (A.12)
i=0
to be written as
Ve T V(B)xt + Nt (A.13)

. where x, and y, are the input and output series (means subtracted),
N, is the noise, and Vor V1> Voo V3 ... are the impulse response

weights.



APPENDIX C
REGRESSION STATISTICS

Regression were run with the SPSS (Nie et al. 1975) computer

package. Equations listed below are from the indicated pages of the

SPSS user's manual.

Per Cent Variance Explained, RZ::IOO_

The proportion of variance explained by regression is evaluated

by the square of the multiple correlation

., (c.1)

where Y, is the observed time series of the predictand, §t is the pre-
dicted series of yt,'? is the mean of yt, and N is the sample size, or.

the number of years of data used in estimating the regression equation

(Nie et al. 1975, p. 331).

F-Test for Significance of R2

The test statistic for the null hypothesis of zero multiple

correlation is given by

2
. R%/k

= 3 (C.2)
(A-R7)Y(N-k-1)

where k is the number of predictors, R2 and N are defined as in Equation
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(C.1), and the computed F is tested against an F-distribution with

degrees of freedom k and N-k-1 (Nie et al. 1975, p. 335).

Adjusted R2

Adjusted R2 is the value of R2 from Equation (C.1) for the
number of predictors in the regression equation:

2 (k-1)

2
—(N_k)(l—R) (C.3)

Adjusted R® = R

where k is the number of independent variables, or predictors; and N

is the sample size (Nie et al. 1975, p. 358).

Standard Error of Regression Coefficients

The estimated standard error of a regression coefficient B is
given by

G, -y @-2)

rt
p—t

(o]
Ntz Mz

et

(C.4)
2

~
al
rt

_§)

prd
ot

where X, is the corresponding predictor variable with sample meanig,

and other terms are defined as before (Nie et al. 1975, p. 325).



APPENDIX D
FREQUENCY RESPONSE FORMULAS

Computational formulas for estimating the gain, phase, squared
coherengy, and intermediate spectral and cross-spectral quantities are
given here, along with details relevant to the plotted functions in
Figures 22 and 23.

Formulas for the various functions are taken from Chatfield
(1975, pp. 139-140 and 180-182). Computations were carried out with the
SPSS statistical package (Nie et al. 1975). Formulas for the confidence
intervals on the gain, phase, and squared coherency are from Jenkins
and Watts (1968).

The Parzen window with a truncation point of 15 lags was used
for the plotted functions, although analyses were initially run with
10, 15, and 30 lags following the window-closing procedure recommended
in Jenkins and Watts (1968, p. 280). The plotted bandwidth was computed
as in Jenkins and Watts (1968, p. 152) by dividing the standardized
bandwidth by the truncation point. All functions were evaluated at the
frequencies

w = Tj/M, j=0,1,2, ..., M (D.1)
Spectral density function f(w) of time series X, -

~ 1 M
fx(m) =-E[X r, +2 E Akr

o%o cos (wk) ] (D.2)
k=1

k
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where r, is the sample autocorrelation of x

k t

at lag k, and Ak’ k =

143

1,2,3, ..., M are the Parzen lag-window weights, with truncation point

M.

Co-spectrum ¢ (w):

M

2 () =% [szM ATy (€) cos (ul)]

where rxy(k) is the.crosscorrelation at lag k between X, and Yyr

Quadrature spectrum q(w):

M

[ j;M Aery(k) sin(wk)]

A

q(w) =

A |-

Cross—amplitude spectrum ny(w):

A = /2w + W

Phase ny(w):

Cw = B2 @/I£,w) - £ W]

Gain a(w):

@ = A W/E W

Confidence interval for gain (Jenkins and Watts 1968, p. 434): The

(D.3)

(D.4)

(D.5)

(0.6)

(D.7)

(D.8)

100 (1 - a) per cent confidence interval on the gain estimate is given

by
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ew (1:/-2% (1-0) 1-Clw,  (0.9)

v-2 2 v-2 C(w)

where F2,v—2 refers to an F distribution with degrees of freedom 2 and
v-2, and

v=3.713
is the number of degrees of freedom of a Parzen window with truncation
point M, when the sample size is T years.

Confidence interval for phase:
The 100 (1 -a) per cent confidence interval for the phase

(Jenkins and Watts 1968, p. 435) is given by

C(U)))

ny(w) + arcsin,/lvzz 2 (1 -a) ( Ew) (D.10)

where terms are defined as in previous equations.

Confidence interval for squared coherency:
The two-standard-error confidence level for the squared
coherency (Jenkins and Watts 1968, p. 379) is given by

/ 539M

*
C (w) * 1.96 o1

(D.11)

*
where C (w) is the transformed variable

* 1 1 v
¢ @ =3 -l—fjl-—i— '%(%;: (D.12)

and T is the sample size or length of record.
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