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ABSTRACT

Tree-ring site chronologies, the predictors for most dendroclimatic reconstructions, are essentially mean-value
functions with a time varying sample size (number of trees) and sample composition. Because reconstruction
models are calibrated and verified on the most recent, best-replicated part of the chronologies, regression and
verification statistics can be misleading as indicators of long-term reconstruction accuracy. A new reconstruction
method is described that circumvents the use of site chronologies and instead derives predictor variables from
indices of individual trees. Separate regression models are estimated and cross validated for various time segments
of the tree-ring record, depending on the trees available at the time. This approach allows the reconstruction to
extend to the first year covered by any tree in the network and yields direct evaluation of the change in
reconstruction accuracy with tree-ring sample composition. The method includes two regression stages. The first
is to separately deconvolve the local climate signal for individual trees, and the second is to weight the decon-
volved signals into estimates of the climatic variable to be reconstructed. The method is illustrated in an
application of precipitation and tree-ring data for the San Pedro River Basin in southeastern Arizona. Extensions
to larger-scale problems and spatial reconstruction are suggested.

1. Introduction
Networks of tree-ring sites have proved valuable for

extending climatic records on most of the world’s con-
tinents (Stockton et al. 1985). Dendroclimatic recon-
structions are usually generated by a regression model
in which the predictors are site chronologies—indices
of annual ring width averaged over several trees at a
collection site (e.g., Fritts et al. 1979; Stockton and
Meko 1983; Stahle and Cleaveland 1992). The trees in
a chronology typically have different starting years, so
that a site chronology is a mean-value function with a
time varying sample size. Calibration and verification
statistics measuring the accuracy of climatic reconstruc-
tion are computed for the most recent period, when the
sample size is generally highest and the chronology
most representative of the hypothetical ‘‘true’’ popu-
lation tree-ring variation at the site. Such statistics are
known to overestimate the accuracy of reconstruction
when applied to the more poorly replicated early part
of the tree-ring record (Wigley et al. 1984). The ‘‘sub-
sample signal strength’’ (SSS), a statistic derived from
the theory of the average of correlated variables, can
be used to estimate the bias in the regression R2 for a
climatic reconstruction model (Wigley et al. 1984). This
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application of the SSS is strictly valid, however, only
if the strength of climatic signal is similar for the various
trees at a site. For heterogeneous site types, large mi-
crosite differences—in moisture availability and expo-
sure, for example—could be associated with large tree
to tree differences in climatic content of the ring se-
quences. If the climatic signal happens to be strong in
only a few trees, increasing the sample size could dilute
rather than enhance the strength of the climatic signal
in the site chronology and invalidate the use of the SSS
in assessing the drop in reconstruction accuracy over
time.
In this paper a dendroclimatic reconstruction method

is proposed that exploits the tree-specific climatic signal
in tree-ring data and gives a direct estimate of the time
variation of reconstruction accuracy. A departure from
conventional reconstruction methods is that the regres-
sion predictors are derived from indices of individual
trees instead of site chronologies. A separate reconstruc-
tion model is calibrated and verified for each year or
group of years in the tree-ring record, using tree-ring
data from only the trees living at the time. The time
coverage of reconstruction is maximized by this ap-
proach because the reconstruction can extend to the ear-
liest year of data for the oldest tree at any site.
The calibration–verification of multiple reconstruc-

tion models to accommodate predictor data subsets
whose composition varies in time is not new in den-
droclimatology. A similar approach has previously been
applied to deal with site chronologies with different
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starting years (Young 1994). In the extension to indi-
vidual trees, tree to tree differences in the dynamic re-
sponse of growth to climate are allowed for by a two-
stage regression procedure. The first stage is lagged re-
gression to deconvolve the local climatic signal from
the growth indices of individual trees. The result of this
stage is essentially a time-filtered tree index. The second
stage is principal components regression to weight the
time-filtered indices for groups of trees into estimates
of the climatic variable to be reconstructed.
The method as described in this paper applies to the

following reconstruction scenario: a set of tree indices
and climatic time series is available for some geograph-
ical region; the objective is reconstruction of a single
‘‘regional’’ climatic time series; and all tree indices and
climatic series overlap for a common period, to be used
as a calibration period. The model is described and its
application illustrated for tree-ring data and precipita-
tion data for the San Pedro River Basin in southern
Arizona. Possible extension to spatial regression and to
tree-ring datasets that do not uniformly overlap the cli-
mate–tree-ring calibration period is then suggested.

2. The model
Three sets of data are required to implement the mod-

el: py1, a p-year time series of the regional climate vari-
able whose long-term reconstruction is the goal; mWn, a
matrix of tree indices, or ring-width indices, for m years
at n trees; and pCn, a matrix of ‘‘local’’ climate variables
for p years at the n tree locations. Trees sampled at the
same location (e.g., at a conventional tree-ring ‘‘site’’)
could be assigned the same local climate variable; thus,
some columns of pCn might be identical. The modeling
procedure, illustrated in Fig. 1, consists of three main
steps, followed by cross-validation. Step A is a time
filtering of each tree index to deconvolve its local cli-
mate signal. The filter weights for this operation are the
coefficients of a multiple linear regression equation of
the local climate variable on lagged values of the tree
index. The filtered series resulting from substitution of
long-term tree indices into the equation is referred to
as a ‘‘single-site reconstruction’’ (SSR). Time coverage
by the SSRs will generally differ from tree to tree, de-
pending on the date of the first measured ring and the
number of start-up values lost in the lagged regression.
Step B is the identification of k different tree subsets,

one of which can be associated with each year of the
tree-ring record. For example, the beginning years of
the record might be represented by the smallest possible
subset, consisting of a single tree, and the last few years
by a subset of hundreds of trees. The k subsets of SSRs
are different possible predictor data subsets for spatial
models to reconstruct the regional climate variable.
Step C is spatial filtering of the SSRs to combine

climatic information from the spatially distributed trees
into an estimate of the regional climate variable. The
equations to weight the SSRs are derived by principal

components regression (PCR) of the regional climate
variable on principal component (PC) scores of the
SSRs. Separate models are estimated for the k different
predictor data subsets. Because the lagged response of
tree growth to climate has already been adjusted for in
generation of the SSRs, these final regression models
do not include lagged predictors.
Several assumptions are made in applying the model.

The tree indices mWn are assumed to have been adjusted
for removal of the growth trend (Cook et al. 1990b).
Each column of pCn is assumed to be a time series of a
climate variable governing or strongly influencing
growth variations of the tree in the corresponding col-
umn of mWn. Climatic series must, therefore, have been
paired with or otherwise grouped beforehand to match
up with individual trees. This pairing might be accom-
plished by distance weighting the station climate series
to tree locations, by averaging over climate stations
nearest each tree or by simply pairing each tree with its
nearest climate station. The tree-ring series, local cli-
mate series, and regional climate series are assumed to
overlap for a p-year calibration period and to contain
no missing data for that period. Relaxation of these
assumptions is discussed later.
The climate series py1 and pCn might or might not be

of the same type, depending on the application. In large-
scale climatological application, for example, py1 might
be an index of atmospheric circulation and pCn, might
be the annual or seasonal precipitation interpolated for
tree locations over a continent. For a basin-scale hy-
drologic study, py1 might be basin-average precipitation
and pCn might be station precipitation series paired with
individual trees scattered over the runoff producing parts
of a watershed. The steps in the modeling procedure are
described in more detail below.

a. Time filtering—Single-site reconstructions
The climate–tree-growth system is dynamic in that

past, as well as the current year’s, climate can influence
the current year’s ring width. The time filtering opera-
tion described here is intended to reverse the effects of
the filtering of climate by this natural system. Each local
climate series (column of pCn) is regressed on lagged
values of its paired tree index (corresponding column
of mWn) for the p-year overlap period. The estimated
regression equation is used as the time filter for the tree
index. The filter is optimal in a least squares sense in
maximizing the explained variance of the local climate
series from a sequence of values of the tree index.
An initial decision in the regression design is the

number of positive and negative lags to include as po-
tential predictors. An upper limit for this number might
be guessed from prior knowledge of the lag properties
of the tree-growth system—for example, that needles
are retained for a specific number of years. Another
approach might be trial and error modeling, increasing
the number of lags until the regression residuals are
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FIG. 1. Flowchart summarizing reconstruction steps. Refer to text for definitions. Superscript
‘‘*’’ attached to a variable (e.g., py1 to p ) indicates standardization by subtraction of cali-y*1
bration-period mean and division by calibration-period standard deviation.

suitably independent in time and uncorrelated with the
predictors. The lags appropriate for the model are likely
to depend on whether the tree indices in mWn have been
prewhitened beforehand—for example, by autoregres-
sive moving average (ARMA) modeling (Cook et al.

1990a). Prewhitening essentially removes low-order au-
tocorrelation from the tree indices, which should reduce
multicollinearity of the predictors in the lagged regres-
sion models. Lagged predictors are thus less likely to
enter as important predictors in the models, and the
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model structure is simplified. Significant cross corre-
lations are still possible, however, between the prewhi-
tened tree indices and the local climate variable, es-
pecially if the climate variable is itself autocorrelated
(Meko and Graybill 1995).
If lags from �L to L yr from the year of climate are

specified as potential tree-ring predictors, the model for
a tree is

2L�1

c � b � b w � e , (1)�t 0 i ��i t
i�1

where ct is the local climate variable in year t, b0 is the
regression constant, bi is the regression coefficient on a
current or lagged value of the tree-ring index, w� � i is
the tree-ring index in year � � i, � is t � L � 1, a
relative year index, and et are regression residuals.
The predicted values of the local climate data are

estimated from the fitted model
2L�1

ˆ ˆĉ � b � b w . (2)�t 0 i ��i
i�1

The model is fit stepwise such that lagged tree indices
are entered in decreasing order of contribution to the
reduction of residual variance. Entry of variables is
stopped when the addition of another variable fails to
increase the adjusted squared coefficient of multiple de-
termination (Weisberg 1985).2Ra
The long-term tree-ring data are substituted into the

equation to get estimates of the local climate variable
at each tree for the full length of the tree-ring series
(possibly minus one or more start-up years in lagging).
The resulting reconstruction, scaled by subtracting the
calibration-period mean and dividing by the calibration-
period standard deviation, is a single-site reconstruction.
The regression procedure is repeated for all trees, and
the SSRs are stored in a matrix m .Ĉ*n
A suite of statistics, adequately described elsewhere,

is available for assessing the accuracy of the reconstruc-
tion models (Gordon 1982). An important part of this
assessment is the verification of each model’s perfor-
mance using data not used in model calibration. The
verification method used here is cross validation, in
which each observation is successively withheld, a mod-
el is estimated on the remaining observations, and a
prediction is made for the omitted observation. The
model performance is then judged by the agreement of
the predicted climate with the observed climate for the
complete set of deleted observations (Michaelsen 1987).
Agreement can be quantified by the average prediction
error, as computed from the predicted residual sum of
squares (Weisberg 1985). The reduction of error statis-
tic, also based on the residual error sum of squares, can
be used to assess the relative skill of reconstruction—
relative to simply substituting the calibration-period
mean as the reconstructed value in each year (Gordon
1982).
A slight modification of Michaelsen’s (1987) cross-

validation procedure was necessary for the reconstruc-
tion method proposed in this paper because of the use
of lagged predictors in the SSR models. A ‘‘leave one
out’’ strategy is not suitable because tree-ring data used
in model estimation would also be used in the prediction
for the omitted observation. For a symmetrical lag of
�L yr in the SSR models, r � 4L � 1 values centered
on the cross-validation estimate must be omitted to en-
sure that there is no overlap of the tree-ring data used
to fit a reconstruction model with data used to generate
the cross-validation prediction.

b. Tree subset identification
The second step in the model is to identify the dif-

ferent tree subsets that each year of the tree-ring record
can be associated with. The starting row of valid entries
(nonmissing data) in the matrix of single-site recon-
structions m will generally vary for reasons describedĈ*n
previously. Let I � {1, 2, . . . , m} be the set of row
numbers, representing years, of m , and J � {1, 2,Ĉ*n
. . . , n} be the set of column numbers, representing
trees, in m . Each year of m can be associated withˆ ˆC* C*n n
a column subset of J, indicating the trees available for
a reconstruction of the regional climate variable in that
year. The same subset of trees might apply for several
years, such that only k of the m possible subsets are
unique.
The unique subsets of trees, denoted by {Hj � J, j �

1, . . . , k}, identify k different predictor data subsets for
later use in reconstructing the regional climate variable.
The corresponding groups of years of the tree-ring rec-
ord before the calibration period for which the subset
models apply can be denoted by {Li � I, i � 1, . . . , k}.
Let mi and ni be the numbers of rows (years) and

columns for the ith subset model, be the submatrixĈ*m ni i

of single-site reconstructions prior to the calibration pe-
riod, and p be the corresponding submatrix for theĈ*ni
p-year calibration period. The matrices p andĈ*ni

are the calibration-period predictor data and re-Ĉ*m ni i

construction period predictor data applicable to the ith
spatial reconstruction model.

c. Spatial filtering
The SSRs derived by lagged regression in step A and

grouped in step B are weighted by principal components
regression into estimates of the regional climate series
py1. This second regression stage is ‘‘spatial filtering’’
in that the regression weights are applied to functions
of spatially distributed variables. PCR is adopted to con-
vert the original set of predictors into a smaller set of
orthogonal predictors.
The reader is referred elsewhere for general infor-

mation on PCR as a reconstruction method in dendro-
climatology (Cook et al. 1994). The use of PCR in the
context of the proposed reconstruction method is out-
lined in Fig. 1 and described briefly below.
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Several steps are repeated k times within a loop for
each of the k spatial models. The single-site reconstruc-
tions p are converted to orthogonal principal com-Ĉ*ni
ponent scores using principal components analysis
(PCA). Only of the ni eigenvectors are retained,n �i
where � ni, based on an eigenvalue of 1 or othern �i
criterion for deleting higher-order eigenvectors (Cook
et al. 1994). The transformation is given by

pU � p E ,Ĉ*n � n n �i i i
(3)

where pU are the PC scores and E are the most� � n �ni n ni ii

important eigenvectors (sorted by order of eigenvalue)
of p . Because the columns of p are standardizedˆ ˆC* C*n ni i

variables, it makes no difference whether the eigenvec-
tors are computed on the correlation matrix or the co-
variance matrix.
The PC scores are standardized to unit standard de-

viation by dividing by the square roots of their eigen-
values (Cook et al. 1994):

p � pU T ,U*n � n � n �i i i
(4)

where T is a diagonal matrix with inverses of squaren � n �i i

roots of the eigenvalues of the important eigenvectorsn �i
along the diagonal.
To eliminate the need for a constant term in the re-

gression equations, as a convenience, the regional cli-
mate variable is standardized to zero mean and unit
standard deviation

p � 1/s(py1 � py1),y*1 (5)

where s is the calibration-period standard deviation (sca-
lar) of py1 and py1 is a constant vector of the calibration-
period mean of py1. The standardized regional climate
variable is then regressed on the standardized PC scores
of tree indices using stepwise multiple linear regression.
Because the predictors are orthogonal and have equal
variances, the order of entry of predictors is specified
by the relative sizes of the regression coefficients. A t
test (Mardia et al. 1979) is used to determine whether
the regression coefficient for a PC score is significant
at the 95% level, and nonsignificant predictors are omit-
ted from the prediction equation. This equation is

p � p Â1,ŷ* U*1 n �i
(6)

where Â1 is a vector whose elements are estimatedn �i

regression coefficients if the corresponding PC score in
p has been included as a predictor and are zero ifU*n �i

not.
The prediction equation is expressed in terms of the

original predictors (single-site reconstructions) instead
of the PC scores:

ˆŷ* � U* A�p 1 p n 1i

ˆ� U T A� �p n n 1i i

ˆ ˆ� ( C*E )T A . (7)� �p n n n 1i i i

The precalibration-period SSRs are substituted into

the regional regression equation to get the long-term
reconstruction for the subset reconstruction period

� ( E )T Â1,ˆŷ* C*m 1 m n n � n �i i i i i
(8)

Finally, the predicted values for the calibration period
and the earlier period are transformed to units of the
regional climate variable by multiplying by the calibra-
tion-period standard deviation and adding back the cal-
ibration-period mean:

pŷ1 � s(p ) � py1*ŷ1 (9)

and

ŷ1 � s( ) � y1,*ŷm m 1 mi i i
(10)

where s and py1 are defined as before, and y1 is ami
constant vector of length mi of the calibration-period
mean of py1.
The final step is cross validation of the PCR models,

which is accomplished as described previously for the
SSR models.

3. Example
The method described above is illustrated in a re-

construction of cool-season (November–April) precip-
itation for the San Pedro River Basin (SPRB) in south-
eastern Arizona (Fig. 2). The input data consist of pre-
cipitation records for 12 stations (Table 1) and tree-ring
indices for 16 trees in mountain ranges flanking the
SPRB (Table 2). Two tree species are represented: Pinus
ponderosa (2 trees), and Pseudotsuga menziesii (14
trees). The beginning years of the tree-ring series range
from 1270 to 1723, and the ending years from 1987 to
1994. In the terminology of the previous sections, the
regional series to be reconstructed is the 12-station-
mean precipitation and the local climate series for the
single-site reconstructions are averages of precipitation
over one to seven stations grouped with each tree (Table
2). The calibration period for all regression models is
1916–68, when precipitation records sampling various
parts of the basin were most complete.
In the single-site regressions, each local climate series

was regressed stepwise on its paired tree index, lagged
�1, 0, and �1 yr from the year of climate. Note that
including the lag t � 1 tree-ring index as a predictor
for the climate in year t does not imply a violation of
physical causality. The negative lag is included because
the climatic interpretation of the ring width anomaly in
year t is conditional on the ring width anomaly in year
t � 1. For example, even if precipitation is normal in
year t, the ring in year t might be wider than normal
because of carryover food storage from an unusually
moist year year t � 1.
Predictors were entered stepwise until an additional

predictor failed to increase the adjusted R2. The single-
site regression models are summarized in Table 3. A
simple no-lag model was selected for 10 of the 16 trees;
both positive and negative lags were represented in other
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FIG. 2. Map showing locations of trees and precipitation stations
in or near the San Pedro River Basin. Precipitation stations (circles)
are labeled by a three-letter code as in Table 1. Tree locations (tri-
angles) are numbered as in Table 2.

TABLE 1. Precipitation stations for sample application.

Codea Station name Station IDb

1-TOM
2-BIS
3-CAN
4-ELG
5-FAI
6-SAN
7-HUA

Tombstone
Bisbee
Canelo
Elgin
Fairbank
San Rafael Ranch
Ft. Huachuca

02078619
02070768
02071231
02072797
02072902
02077555
02073120

8-TUC
9-GRA
10-WIL
11-ORA
12-SAF

Tucson
Ft. Grant
Wilcox
Oraclec
Safford

02078815
02073110
02079334
02066116
02077388

a Letter code is used on map in Fig. 2; all stations in southern
Arizona; common period of data coverage is 1916–68.
b Station identification (U.S. Weather Bureau).
c Oracle 2 Southeast (02066119) for years 1950–68.

TABLE 2. Grouping of climate stations with trees for single-site
reconstructions.

Tree
no.a Codeb Site name

Climate
stationsc

1
2
3
4
5
6
7
8

DCY15A
PAD04A
PDF07A
M118A
NSF032
TSE121
BWF091
RRG01B

Douglas Canyon
Paddys River Pine
Paddys River
Mica Mountain
North Slope Fir
Tucson Side East
Bear Wallow Fir
Red Ridge

8, 9, 10, 11, 12
8, 9, 10, 11, 12
8, 9, 10, 11, 12
8
8
8
8, 11
8, 11

9
10
11
12
13
14
15
16

GMF021
SRH021
SRH102
SRH191
MIP3A
MIP12A
CMP10B
CMP02C

Green Mountain Fir
Santa Rita High
Santa Rita High
Santa Rita High
Miller Peak
Miller Peak
Camp Point
Camp Point

8, 11
3, 4, 5, 6, 7
3, 4, 5, 6, 7
3, 4, 5, 6, 7
1, 2, 3, 4, 5, 6, 7
1, 2, 3, 4, 5, 6, 7
9, 10, 12
9, 10, 12

a As numbered on map in Fig. 2.
b Site code–tree number–core, as designated by researchers who

collected the samples. First three characters refer to site, last character
to core, and middle characters to tree; for example, DCY15A is core
A of tree 15 at site DCY, and M118A is core A of tree 8 at site M11.
c Climate stations used for single-site reconstructions, numbered as

in Table 1.

trees’ models. Tree 5 apparently has a 1-yr delay in
climate response. The strength of local climate signal
varies greatly among trees, as indicated by the regres-
sion R2 values and overall F of the equations. Variance
explained ranges from 1% to 44% and overall F from
0.35 to 34.25. The computed overall F is significant at
the 0.05 confidence level for 14 of the 16 trees. Tree
14, which explains only 1% of the climate variance and
has an overall F lower than expected by chance, was
deleted from the tree-ring dataset before proceeding to
the PCR modeling. Except for tree 14, the reduction of
error statistic from cross validation is positive for the
SSR models, indicating some skill of reconstruction (Ta-
ble 3).
Subset identification (step B in Fig. 1) yielded 15

different tree subsets for the years prior to the calibration
period (Table 4). The earliest subset, for 1271–1465,
consists of just a single tree. The second subset, for
1466–1531, consists of 2 trees. Sample size gradually
increases, up to a 15-tree subset for the period 1724–
1915. The actual makeup of the subsets can be identified
by referring back to Table 1 and Table 3. For example,

tree 16 has a start date of 1271, tree 15 joins the dataset
in 1466, and tree 10 joins in 1532.
Each predictor subset listed in Table 4 corresponds

to a PCR model to reconstruct the regional-average pre-
cipitation. As described previously, the PC scores of the
single-site reconstructions are the predictors in these
models. Although a purely objective criterion (e.g., ei-
genvalue greater than 1.0) could be used to screen PCs
to be included in the pool of potential predictors, such
a criterion would be overly restrictive in the early part
of the tree-ring record, when the predictor dataset is not
in need of reduction. For the sample application, the
‘‘eigenvalue of 1’’ criterion was adopted with the fol-
lowing modifications: 1) as long as 7 or fewer trees
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TABLE 3. Summary of single-site reconstructions.1

Site no.a Periodb
Regression coefficientsc

c t � 1 t t � 1

Calibrationd

Accuracy statistics

R2 F p value

Verificatione

r2 RE

1
2
3
4
5

1697
1659
1717
1711
1660

1991
1991
1990
1985
1986

2.07
1.43
1.64
3.43
1.97

0.00
0.00

�1.00
0.00
0.00

3.40
3.84
5.13
1.42
0.00

0.00
0.00
0.00
0.00
3.19

0.28
0.40
0.44
0.04
0.14

19.35
34.25
19.71
2.23
8.32

0.0001
0.0000
0.0000
0.1412
0.0057

0.22
0.34
0.37
0.01
0.05

0.24
0.35
0.38
0.03
0.05

6
7
8
9

1685
1646
1682
1560

1986
1986
1992
1985

2.64
4.15
5.21
4.05

0.00
0.00
0.00

�1.61

2.01
3.10
4.55
4.53

0.00
0.00

�2.84
0.00

0.13
0.08
0.13
0.22

7.42
4.66
3.63
6.85

0.0088
0.0357
0.0338
0.0023

0.10
0.03
0.06
0.18

0.12
0.03
0.07
0.20

10
11
12
13

1532
1601
1639
1724

1984
1985
1985
1992

3.42
3.54
1.17
3.34

0.00
0.00
0.00
0.00

2.02
2.91
3.88
1.12

�1.13
�1.86
0.00
0.00

0.14
0.38
0.38
0.07

4.14
15.04
31.67
3.86

0.0217
0.0000
0.0000
0.0548

0.06
0.27
0.34
0.03

0.07
0.28
0.36
0.04

14
15
16

1714
1466
1271

1992
1989
1989

4.15
2.75
2.28

0.00
0.00
0.00

0.38
1.44
1.74

0.00
0.00
0.00

0.01
0.09
0.07

0.35
4.83
3.78

0.5559
0.0325
0.0573

0.02
0.04
0.04

�0.01
0.05
0.07

a As in Table 2 and on map in Fig. 2.
b Starting and ending years of single-site reconstruction.
c Estimated regression constant and coefficient at indicated lags from year of climate.
d Decimal proportion of explained variance; overall F and its p value.
e Squared correlation between reconstructed and observed climate; reduction of error statistic.

TABLE 4. Summary of principal components regression models.

Model
no.a Periodb

Number of
variablesc

Nt Np Nu

Calibration–verification statis-
ticsd

R2 r2 RE RMSE

1
2
3
4
5

1271
1466
1532
1560
1601

1465
1531
1559
1600
1638

1
2
3
4
5

1
2
3
4
5

1
1
1
1
3

0.09
0.13
0.17
0.23
0.45

0.06
0.09
0.12
0.18
0.25

0.09
0.11
0.13
0.19
0.22

2.156
2.129
2.101
2.025
1.992

6
7
8
9
10

1639
1646
1659
1660
1682

1645
1658
1659
1681
1684

6
7
8
9
10

6
7
7
7
7

3
2
3
2
2

0.53
0.49
0.59
0.55
0.55

0.31
0.25
0.46
0.45
0.43

0.31
0.24
0.46
0.46
0.43

1.868
1.965
1.662
1.661
1.696

11
12
13
14
15

1685
1697
1711
1717
1724

1696
1710
1716
1723
1915

11
12
13
14
15

7
7
7
7
7

3
2
4
4
2

0.62
0.54
0.57
0.62
0.58

0.45
0.38
0.44
0.51
0.51

0.46
0.38
0.45
0.52
0.53

1.662
1.771
1.677
1.558
1.554

a Model number, sequentially from earliest to most recent model
period.
b Starting and ending years of model periods.
c Number of trees (Nt), number of PCs in pool of potential predictors

(Np), and number of PCs included as predictors in final model (Nu).
d Regression R2 for calibration, squared correlation between ob-

served and reconstructed climate, reduction of error statistic, and root-
mean-square error for cross validation.

were available, all PCs were included in the pool of
potential predictors, and 2) when more than 7 trees were
available, the potential predictors included the seven
PCs with highest eigenvalues plus any other PCs with
eigenvalues exceeding 1.0. A PC score was selected
from this pool as a predictor in the final model only if
a t test indicated that the predictor’s regression coeffi-

cient differed from zero at the 0.05 confidence level
(Mardia et al. 1979).
The 15 PCR models are summarized in Table 4. The

maximum number of potential predictors for any model
is seven, and the maximum number in any final recon-
struction model is four. The most recent reconstruction
model, for 1724–1915, includes only two PCs as pre-
dictors. Regression R2 for the PCR models ranges from
0.09 for the earliest, single-tree, model to 0.62 for two
of the later models.
The ability of the reconstruction models to predict

regional climate data not used in the model calibration
was checked with cross validation, successively omit-
ting sequences of five observations from the calibration
dataset and estimating the regression model on the re-
maining observations. The results of cross validation
are summarized by the squared correlation coefficient
between actual and predicted data, the reduction of error
statistic, and the root-mean-square error of prediction
(Table 4).
The accuracy of reconstruction generally increases

with the number of available trees (Fig. 3). Periods of
large vertical separation of the R2 and reduction of error
(RE) curves in the bottom plot of Fig. 3 indicate poor
model verification. The period of best reconstruction,
as indicated by a combination of high R2 and high RE,
is restricted to the years beginning with the mid-1600s.
Models before 1600 verify fairly well, but explain little
variance. Models from 1600 to the mid-1600s explain
much more variance than earlier models, but verify
poorly, possibly indicating overfitting of the models.
The reconstruction and its associated uncertainty as

measured by the root-mean-square error (RMSE) for the
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FIG. 3. Variation of predictor datasets and accuracy of reconstruc-
tion with time. Predictor datasets vary in the number of trees avail-
able, the number of PC scores included as potential predictors, and,
the number included in the final model (top). Calibration and veri-
fication accuracy are measured by the regression R2 and the reduction
of error statistic (bottom).

FIG. 4. Reconstructed cool-season precipitation in the San Pedro
River Basin, 1466–1968. Error bars are �1.0 root-mean-square error
of reconstruction based on cross validation. Asterisks mark regression
estimates classified as extrapolations versus extrapolations by a sim-
ple ellipsoidal approximation to the interpolatory region (Weisberg
1985). The earliest, least reliable, segment of the reconstruction
(1271–1465) has been omitted from the plot to improve readability.

period after 1466 are plotted in Fig. 4. The error bars
are conservative in that the RMSE was computed from
the cross-validation data. The earliest part of the re-
construction (1271–1465) has been omitted from the
plot to improve readability; the reconstruction model
for that period is based on only one tree and explains
only 9% of the climate variance (Table 4). The vertical
compression of the reconstructed series and expansion
of the error bars in the earliest part of the reconstruction
reflect a weakened climatic signal. The signal before
1600, in particular, is weak not only because few trees
are available as predictors, but because the trees avail-
able have relatively weak signals for the climate variable
of interest (single-site R2 values in Table 3).
An unavoidable dilemma with regression methods, as

applied to paleoclimatic reconstructions, is that the most
interesting climatic interpretation is likely to focus on
predicted values classified as extrapolations rather than
interpolations (Weisberg 1985). The regression equation
cannot be assumed to apply to such extrapolations,
which result from tree-ring data outside the multivariate
cloud of tree-ring data for the calibration period. Such
extrapolations are scattered throughout the plotted series
in Fig. 4; in fact, most of the reconstructed values more
than one root-mean-square error greater or less than the
calibration-period mean are extrapolations. The addi-
tional uncertainty inherent in these extrapolations
should be acknowledged in climatic interpretations of
reconstructions.
This example is intended solely to illustrate the re-

construction method, and for clarity of illustration uses
only a few of the available tree-ring collections from
the SPRB. The reconstructions summarized in Figs. 3
and 4 should, therefore, not be considered the most ac-
curate possible for the basin.

4. Discussion
The expansion of error bars and vertical compression

of reconstructed values toward the earliest part of the
record (Fig. 4) is the expected pattern for the following
circumstances: 1) sample size increasing with time, 2)
the trees containing a common signal reflecting climate,
and 3) the signal strength being reasonably similar
among trees. In the limit, the earliest part of such a
reconstruction might approach a horizontal line equal
to the calibration-period mean and the error bars
(RMSE) might exceed the standard deviation of the ob-
served predictand. In such a case, the early part of the
reconstruction should of course be discarded. Less like-
ly, but plausible, is that the essential climate signal
might be contained by a few very old, climatically sen-
sitive trees. If so, the error bars might narrow toward
the early part of the tree-ring record, and the researcher
might consider redoing the entire reconstruction using
just the small subset of old trees.
The method proposed here can be extended to the

problem of spatial reconstruction, or the reconstruction
of spatially distributed fields of climate variables (Cook
et al. 1994). Instead of a single predictand vector p ,*ŷ1
the model would include a matrix of predictands at many
sites or grid points. This predictand matrix could be
reduced, just as p is by PCA, to some smaller numberĈ*ni
of orthogonal predictands. The reconstruction of these
orthogonal predictands and the transformation back to
original predictands at the sites or grid points would
then follow directly according to orthogonal spatial re-
gression, as described by Cook et al. (1994).
A complication in the extension of the proposed meth-

od to spatial regression for large-scale problems is the
PCA reduction of the predictor data. For a continental-
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scale problem, the tree-ring data might include hundreds
of tree-ring sites and thousands of trees. The initial step
in the reconstruction for such a dataset would be the
estimation of thousands of single-tree regression models
and the generation of the thousands of SSRs. The PCs
of these thousands of SSRs would probably be so strong-
ly biased by the uneven spatial distribution of the trees
that the predictor variables for the PCR models would
poorly represent the large-scale tree-growth variations
over the study area. One possible approach is to impose
an intermediate step of data reduction by averaging the
SSRs over trees before proceeding to PCA. For example,
SSRs could be averaged over trees according to mem-
bership in site chronologies as follows:

1) for each tree, represented by a column of mWn retain
a tag identifying the chronology collection site;

2) proceed with the reconstruction as described previ-
ously through the identification of tree subsets Hj
(see section titled ‘‘Tree subset identification’’);

3) for a given tree subset, average the SSRs over trees
(columns of m ) according to chronology collec-Ĉ*n
tion site; and

4) proceed with the remaining steps of the reconstruc-
tion, but using the reduced-column matrix of aver-
aged SSRs instead of the SSR matrix m .Ĉ*n
In this modified method, the number of averaged

SSRs, or the number of variables to be reduced to re-
gional-climate predictors by PCA, is no larger than the
number of chronology collection sites. A trade-off in
the modification is the loss of flexibility in incorporating
possible differences in the strength of the climate signal
of different trees at a particular collection site.
Another complication in the extension to large-scale

problems is the choice of local climate variables for the
single-site reconstructions for trees distributed over a
very large area and representing perhaps many different
species. Precipitation was the variable used in the sam-
ple application—a hydrologic application for a rela-
tively small watershed. In other applications, tempera-
ture as well as precipitation might be considered for the
local climate variable. If a generalized drought response
is expected, a derived variable (e.g., the Palmer Drought
Index) incorporating the combined influence of precip-
itation and temperature on drought stress might be ap-
propriate.
Alternative time series approaches are possible for

deconvolving, or digitally filtering, the annual local cli-
matic signal from the individual tree indices in the sin-
gle-site regression modeling (step A, Fig. 1). One pos-
sibility is to remove persistence separately from the cli-
mate variable and the tree-ring series by ARMA mod-
eling, reconstruct the climate residuals from the
tree-ring residuals in a no-lag model, and build persis-
tence back into the reconstruction using the ARMA cli-
mate model (Meko 1981; Stahle and Cleaveland 1988).
The method presented here could perhaps be modified

to better take into account tree to tree differences in

climate signal strength, as measured by the R2 values
from the single-site reconstructions (Table 3). One pos-
sibility is to skip the step of normalizing the SSRs to
unit variance and to use the covariance matrix instead
of the correlation matrix in the PCA (Fig. 1). Skipping
the normalization risks, however, placing undue impor-
tance on SSRs whose local climate variables happen to
have relatively large variance—as for example, precip-
itation for mountain stations. This problem could be
circumvented by normalizing the SSRs to unit variance,
but then scaling them by some function of the R2 value
before proceeding to PCA with the covariance matrix.
The assumption that all tree indices overlap the period

covered by climatic data is seriously restrictive in ex-
cluding tree-ring data from remnant wood as well as
tree-ring series from living trees whose most recent sec-
tions had to be discarded for some reason (e.g., poor
crossdating or injury to the tree). An examination of
this important problem is beyond the scope of this paper.
A possible approach is to use in place of the remnant
wood series in calibration a substitute or stand-in tree,
whose ring width series does cover the calibration pe-
riod. This stand-in tree might be identified by a simi-
larity of its site characteristics to those of the remnant
wood specimen, or by a similarity in statistical prop-
erties (e.g., variance or autocorrelation properties of tree
indices). The SSR model for the remnant wood could
be calibrated using the stand-in series and the earlier
reconstruction generated by substitution of the remnant
wood series into the regression equation. Such substi-
tution is no more problematic than the generation of
long-term climate reconstructions from site chronolo-
gies built by splicing together time series segments from
living tree and remnant wood specimens (Cook et al.
1995).
The number of trees in the sample application is

smaller than for most practical dendroclimatic problems.
Cross validation can be computer intensive for much
larger datasets. Cross validation of the SSR models for
m trees and p calibration years requires estimation of
m*p regression models. Cross validation of the k PCR
models then requires estimation of k*pmodels. The total
number of models to be estimated is p*(k � m). For a
problem with p � 80 calibration years, m � 300 trees,
and k � 200 tree subsets, a total of 40 000 regression
models must be estimated. Whether this requirement is
a serious limitation to the method depends on the power
of the available computer.

5. Conclusions
The proposed reconstruction method is most appli-

cable to reconstruction scenarios in which the climate–
tree-growth relationship is dynamic, strong in at least
some trees, and variable from tree to tree. The main
advantages over existing reconstruction methods are
flexibility in accommodating tree-specific climate sig-
nals and improved estimation of the time variation of
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reconstruction accuracy. The method has been described
in the context of tree-ring data, but should be adaptable
to other types of annually resolved, spatially distributed,
paleoclimatic indicators with dynamic responses to cli-
mate.
No claim is made that reconstructions by the proposed

method will generally be more accurate than those by
existing methods using site chronologies, only that the
assessment of accuracy is more direct.
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