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Abstract 
The utility of a high-resolution snow-hydrologic model to derive climatological 

indices that describe the variability in radial growth of four conifer species in two Sierra 

Nevada sites is presented herein. Nine annual indices associated with radial growth were 

developed to represent the winter dormancy, characteristics of the snowpack and soil water 

content and the duration of the seasons. Site chronologies of earlywood (EW) and latewood 

(LW) ring widths were developed for mountain hemlock (Tsuga mertensiana), red fir (Abies 

magnifica), white fir (Abies concolor) and ponderosa pine (Pinus ponderosa) at two sites on 

leeward and windward slopes. The signal strength for annual climatological indices derived 
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from model output was tested with correlation and regression, in combination with principal 

components analysis. Results show significant snow-related climate signal in the tree-ring 

data, with substantial differences between species and between EW and LW. Dependence on 

previous year’s snow and soil moisture (a lagged response) were found for EW of hemlock 

and red fir. The primary EW-LW signal contrast for those species is a shift toward 

dependence on current-year moisture conditions for LW, especially for red fir. Lagged 

climate response was less evident for white fir and ponderosa pine. Regression of tree-ring 

series on principal-components of climatological indices showed a stronger average signal in 

EW (R2=0.48) than in LW (R2=0.35). Differences in tree-ring hydrologic signal at the two 

sites are attributed to microclimate and contrasts in snow regime. Results attest to the 

hydrologic model usefulness for investigating temporal relationships between tree rings and 

local climate.  
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1. Introduction 
Tree rings have been widely used to reconstruct hydroclimatic variables in the 

western United States, including precipitation (e.g. Gray et al., 2004; Meko et al., 2011a; 

Touchan et al., 2011), temperature (e.g. Briffa et al., 1992; Graumlich, 1993; Biondi et al., 

1999), streamflow (e.g. Biondi and Meko, 2019; Graumlich et al., 2003; Woodhouse et al., 

2006; Graham and Hughes, 2007), snowfall and snow water equivalent (e.g. Tunnicliff, 1975; 

Woodhouse, 2003; Timilsena and Piechota, 2008; Pederson et al., 2011; Anderson et al., 

2012a; Belmecheri et al., 2016) soil water content (e.g. Briffa and Wigley, 1985; Yin et al., 

2008; Anderson et al., 2012b) and drought indices (e.g. Stockton and Meko, 1975; Cook et 

al., 1999, 2007; Meko and Woodhouse, 2005). These aforementioned hydroclimatic 

reconstructions were developed at the watershed or regional scales using monthly or 

temporally coarser observation datasets.  

In some regions, tree growth is unmistakably limited by the availability of either 

energy or water (e.g. Stephenson, 1990) and therefore a single climatic variable that 

represents this growth-limiting factor can explain a large portion of the tree radial growth 

variability.   
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In our study area, in California’s Sierra Nevada, the growth-limiting factor is likely 

dominated by the seasonal interplay between energy and water that determines the timing, 

duration, and quantity of water available for the trees during their growing season (e.g. 

Graumlich and Brubaker, 1986; Vaganov et al., 1999; Nakawatase and Peterson, 2006). This 

interplay is expressed by the interaction between the seasonal snowpack and the soil column, 

which in the Sierra Nevada is highly variable in space and time (e.g. Harpold, 2016).  

The annual phenological cycle of high-elevation conifers in the Mediterranean climate 

of the Sierra Nevada broadly has three stages. First is restricted growth or complete 

photosynthetic dormancy during the cold winter months (~November-May) due to the short 

photoperiod and low temperature. Second is optimal growth during the spring when warm 

temperature and soil water from melted snow is available for transpiration (~April-July). 

Third is slowdown and limited growth during the summer to early-fall period of high 

temperature, little rain, large vapor pressure deficit and depleted soil water content in areas 

with limited soil water storage (~August-October) (e.g. Stephenson, 1990).  Tree species 

differ in their tolerance during the limited growth seasons (winter or summer) and in their 

growth rate during the growing season (e.g. Royce and Barbour, 2001; Kelly and Goulden, 

2016).   Moreover, the large climatic interannual variability and the terrain-driven spatial 

variability of temperature and rain-snow mixture translate to large spatiotemporal variability 

in the duration of these phenological stages (e.g. Royce and Barbour, 2001; Bunn et al., 

2018). 

Inferences that tree-ring growth variability is controlled by growing season properties 

are often implicit and based on cross-correlation of tree-ring series with multi-monthly means 

of climatic variables such as precipitation, temperature and snow (e.g.  Peterson and Peterson. 

2001; Littell et al., 2008).  Our objective is to explore the use of tailored annual climate 

indices that explicitly represent the important seasonal factors that explain tree growth 

variability. Since congruent space-time soil and snow observations are rarely available, we 

rely on output from hydrologic modeling to describe these climatic indices and their spatial 

and temporal variability.  We evaluate this methodology using four conifer species – 

mountain hemlock (Tsuga mertensiana), red fir (Abies magnifica), white fir (Abies concolor) 

and ponderosa pine (Pinus ponderosa) from two sites that are hydroclimatically different 

despite their close proximity (less than 20 km apart).  

In conifers, earlywood (EW) develops early in the growing season and consists of 

layers of relatively large, thin-walled cells. Latewood develops later and consists of layers of 

narrower, denser cells with thicker walls (e.g.  Fritts, 1976). The anatomical and color 
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contrast between latewood and the following year’s earlywood is seen in a radial section as a 

series of concentric tree rings. The relative timing of features within the growing season is 

recorded by the position of the ring-features in the sequence of cells making up the annual 

ring. For example, in the southwestern interior U.S., the position of a band of increased wood 

density – false latewood band – in conifers has been used as a marker of a slowdown in 

cambial growth associated with the dry fore-summer characteristic of the North American 

Monsoon system; cambial growth following the band has been applied to reconstruct summer 

precipitation (e.g. Griffin et al., 2013) and temperature (e.g. Briffa et al., 1988).   

Our objectives are to improve understanding of snowpack-related climate signals in 

the four tree species from the sample sites, and to illustrate the use of a high-resolution 

hydrologic model as a dendrohydrological tool. We first describe the development of the tree-

ring chronologies and essential components of the hydrologic model, run at a six-hourly time 

step, and the annual climatological indices derived from the model output. We then examine 

the statistical relationship of model output and climatological indices with EW and LW width 

chronologies from the two study sites.   

2. Data and Methods 
2.1 Study Area  
 The two sites in the central Sierra Nevada selected for this study are Carpenter Ridge 

(CPR; ~2500 a.m.s.l) and Truckee Ranger Station (TRS; ~1,980m a.m.s.l.). The CPR site is 

located on the windward slope of the mountains, in the South Yuba River watershed, and the 

TRS site is located on the leeward slope, in the Truckee River watershed (Figure 1; Table 1).  

The geology at both sites is volcanic, with Quaternary rocks and minor pyroclastic 

deposits at TRS and Tertiary pyroclastic and volcanic mudflow deposits at CPR.  The soil at 

TRS is about 1 meter in depth, and the soil at CPR is shallower than 1 meter. Both sites are 

well drained with sandy loam topsoil. The subsoil is clay loam at CPR and sandy clay loam at 

TRS.     

 

Most precipitation events, which alternate between rainfall and snowfall, occur in 

November-April, whereas June-September is generally dry and hot with infrequent 

convective rainfall events. Seasonal snowpack at high elevations (typically above 1500 m) 

develops during November-April and completely ablates during the spring and summer 

(April-August). Precipitation spatial variability is driven strongly by orographic lifting that 

leads to enhancement on the windward (western) slopes and reduction on the leeward 
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(eastern) slopes (e.g. Pandey et al., 1999; Wang and Georgakakos, 2005; Lundquist et al., 

2010).  The soil in our study area rarely freezes, and the occasional events with soil 

temperature below 0oC typically last for only several hours. 

 

2.2. Tree-ring chronologies 
Field collection in the summers of 2015 and 2016 yielded the four sampled species at 

the two sites (Table 1). We sampled large and mature trees without noticeable competition 

for resources from neighboring trees. Ring-width variability in such trees is likely due mainly 

to climate. Moreover, we selected trees on sloping terrain, not near streams, springs or 

ponding water, to reduce the chance of roots tapping multi-year water sources. The sampling 

strategy favors sensitivity of tree growth to interannual climate variability. 

Two increment cores were taken at breast height from 20 trees of each species. 

Samples were surfaced and cross-dated following standard dendrochronological techniques 

(Stokes and Smiley, 1968). Total ring widths, EW width and LW width of each core were 

measured to the nearest 0.01 mm using a VELMEX measurement system (Velmex Inc., 

2016) and Tellervo software (Brewer, 2014). Crossdating and measurement accuracy were 

verified using COFECHA (Holmes, 1983; Grissino-Mayer, 2001). These quality control 

measures also help eliminate trees whose moisture supply comes from a multi-year storage in 

bedrock, as ring-width patterns from such trees are likely to have high persistence and to fail 

tests for high frequency correlation – as emphasized by COFECHA.  

Each tree-ring widths series was fit with a cubic smoothing spline having a frequency 

response of 0.5 at a wavelength equal to 67% of the series length to remove trend 

indistinguishable from growth variations associated with tree age, size, and stand dynamics 

(Cook and Kairiukstis, 1990). The detrended series were then prewhitened with low-order 

autoregressive models to remove year-to-year persistence expected from biological processes 

such as food storage and multi-year needle retention. Indices from individual cores were 

combined into site chronologies for each combination of site and species using a bi-weight 

robust estimate of the mean using program ARSTAN (Cook and Holmes, 1999; Cook and 

Krusic, 2005).  

LW chronologies were further modified to “adjusted LW” by linear regression (Meko 

and Baisan, 2001) to remove statistical dependence of LW width on preceding EW width. 

LW chronologies used in subsequent analyses here are adjusted LW.  
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2.3 Hydrometeorological data  
We used a hydrologic model to derive soil water content, snow water equivalent 

(SWE) and actual evapotranspiration estimates at the sites to compare with the tree 

chronologies.  The hydrologic model provides a dataset congruent in space and time that can 

represent differences between the tree sites in lieu of observations.  As model input, we used 

the gridded 1/16° (~6 km) daily dataset of precipitation, wind, and maximum temperature 

(Tmax) and minimum temperature (Tmin) assembled by Livneh et al. (2013) for North America 

(1915–2015). We adjusted the temperature data using the environmental lapse rate (6.5 

oC/km) to account for the differences in elevation of the interpolated grid cells and the tree 

sites.  Tmin was further corrected as a function of elevation using the following regression 

derived by comparing gridded Livneh data to local station Tmin. 

𝑇min_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑇𝑚𝑖𝑛 + (0.0053 ∙ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛(𝑚)) − 7.5(°𝐶),       Elevation > 1450 (m)     

(1) 

The daily temperature was disaggregated to 6-hour time steps, the required time interval for 

the hydrologic model input, by setting forth the following assumptions:  Tmin occurs at 

sunrise, Tmax occurs at solar noon, and average temperature occurs at sunset.  Temperatures 

vary linearly between these diurnal markers. Using monthly local times for sunset, sunrise, 

and solar noon for the American River (rounded to the closest hour), hourly temperature 

estimates were derived and averaged to derive six hourly temperature at 3:00, 9:00, 15:00 and 

21:00 Pacific Standard Time.  

Daily precipitation was evenly disaggregated to six-hour intervals, and six-hour wind 

speed was set at the daily values. For days with missing wind data, we assigned 

climatological means at the Blue Canyon meteorological station (39.26°N, 120.71°W, 1,510 

meters) for 3:00, 9:00, 15:00 and 21:00 local time. Blue Canyon relative humidity was also 

assumed to be representative of the study area. Missing values of relative humidity were 

replaced with the long-term monthly means at Blue Canyon.  Relative humidity was set to 

100% during precipitation events.    

Observations of soil water content (SWC) and Snow water equivalent (SWE) are 

available from NRCS USDA (http://www.wcc.nrcs.usda.gov/) for Carpenter Ridge 

(Independence Lake station, ID-541, 39.43oN, -120.31oE, and 2530 m) and for Truckee 

(Truckee#2 station, ID-834, 39.3oN, -120.18oE, and 1972 m). These records were compared 

http://www.wcc.nrcs.usda.gov/
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with the hydrologic model simulations to tune the model’s parameters and evaluate its 

performance. Soil water content starting in 2004, is available from measurements at 5, 20, 

and 50 cm below the surface. These measurements are based on soil dielectric permittivity 

(Stevens Hydra probe I and II, Stevens Water Monitoring Systems, Inc.) with a standard 

calibration for all soil types. The soil water content measurements are reported as water 

volumetric fraction (percent). Observed 1980-2014 daily SWE from snow pillows – devices 

that measure pressure due to overlying snow mass – are also available for Independence Lake 

and Truckee #2.     

 

2.4 Hydrologic model  
Soil water content (SWC) was estimated using the Sacramento Soil Moisture 

Accounting (SAC-SMA) model, whose structure and parameters are described in Burnash et 

al., (1973).  The model is forced by snowmelt, precipitation and reference potential 

evapotranspiration to simulate soil water content and actual evapotranspiration.  The SAC-

SMA model conceptualizes the storage and transport processes in two soil layers.  It 

represents the hydrologically active zone of the soil as a relatively thin upper layer (~.2 m) 

and a thicker lower layer (~up to 1.5m). Each layer consists of a tension and a free water 

reservoir. The free water reservoir represents the water that flows through the interconnected 

soil pores by gravitational forces, whereas the tension water reservoir represents water held 

by the surface of the soil particles as films and can only be removed by evapotranspiration. 

Unless specified differently, the simulated fractional soil water content values reported in this 

study represent the ratio of the simulated total water content to the fully saturated conditions 

of the upper and lower soil layers.   

We assume that the root zone of the trees is contained within a relatively shallow soil 

layer; this is also the hydrologically active zone represented by the two layers of the SAC-

SMA model. Our field strategy of sampling trees located on sloping surfaces away from 

potential ponding water or areas with deep soil was aimed at avoiding trees that are likely to 

tap deeper or more permanent moisture sources. The optimal model to simulate the soil water 

accessed by the roots of trees is an open research question, beyond the scope of this study, 

and their remains some possibility that roots might access some moisture outside the SAC-

SMA soil zones.  

A prior parameterization of the SAC-SMA model for the tree sites was conducted 

using the Soil Survey Geographic Database (SSURGO), developed by the National 
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Cooperative Soil Survey and archived by the National Resources Conservation Service 

(NRCS), U.S. Department of Agriculture (USDA). SSURGO polygons at the tree sites were 

identified and soil texture data was obtained for 0-10, 10-25, 25-50, 50-100, 100-150 and 

deeper than 150 centimeters.    The soil texture was aggregated into the two SAC-SMA soil 

layers by selecting the dominant texture for 0-25 cm and 25-150 cm for the upper and lower 

layer, respectively, dependent on the prescribed soil depth. The derivation of SAC-SMA 

model parameters using the SSURGO dataset is described in Anderson et al., (2006) and 

Koren et al., (2003).    

To simulate the accumulation and ablation of the snowpack we used the SNOW17 

model (Anderson, 1976), a single layer conceptual model that requires air temperature and 

precipitation data as input. Air temperature is used as an index for the energy exchange across 

the snow-air interface in order to compute snowmelt and distinguish snowfall from rain. The 

model continuously accounts for the heat storage of the snowpack and the retention, freezing, 

thawing, and transmission of liquid water through the pack.  Once the snowpack has risen to 

isothermal conditions at 0oC, during periods with no precipitation, the air temperature is used 

in conjunction with seasonally varying melt factors to estimate the rate of melt. During rain 

on snow events, a simplified energy balance approach is used. The model also accounts for 

water transport through the snow-soil interface. Initial model parameters for the tree sites 

were adopted from Shamir and Georgakakos (2006 and 2007). Possible shade effect, which 

may influence melt within the study area was not considered (Lundquist and Flint, 2006).  

For potential evapotranspiration (PET), the California Irrigation Management 

Information Service (CIMIS –Penman) method was used. The CIMIS-Penman procedure 

applies empirical coefficients for wind speed (Snyder and Pruitt, 1985) to modify the 

American Society of Civil Engineers standardized reference evaporation equation (Allen et 

al., 2005).  In agricultural practices, potential evapotranspiration for a specific agricultural 

crop under optimal health and unlimited water supply is adjusted using seasonally varying 

adjustment factors (crop coefficients) to represent the crop’s evapotranspiration (ET) at 

different growth stages.  

We modified the potential evapotranspiration described above using monthly 

coefficients to represent the phenological stages of conifers, as suggested by NWSRFS, 

(1999) and Georgakakos and Smith, (2001) (Conifers’ phenological coefficients January-

December: 0.5, 0.6, 0.8, 1, 1, 1, 1, 1, 0.8, 0.7, 0.6, and 0.5).   The actual evapotranspiration 

(AET) is calculated as a function of potential evapotranspiration and the available soil water 

content estimated by the SAC-SMA model. In the SAC-SMA model, actual 
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evapotranspiration is first withdrawn from the tension reservoir of the upper layer in a rate 

that is proportional to the fraction of water content in the upper tension reservoir. The unmet 

evaporative demand is then withdrawn from the lower tension reservoir at a rate of the 

fraction water content of the lower tension water to the total soil water tension capacity. 

Available free water proportionally resupplies the tension reservoirs.  

 When actual evapotranspiration is equal to potential evapotranspiration, both moisture and 

energy are available for transpiration and conditions are optimal for tree growth. Deviation 

from these optimal growth conditions can be measured by the evapotranspiration deficit, 

which is calculated as the difference of potential and actual evapotranspiration.   

 

2.5 Annual climatological indices  
Using the 6-hour hydrologic model simulations, we derived nine indices for each water year 

(1 October – 30 September) and for each site to be compared with the annual EW and LW 

chronologies.  The definitions of the selected indices are shown in Table 3 and the definitions 

of the seasonal onsets required for the calculation of the indices are presented in Table 2 and 

Figure 2.  The indices were selected to represent processes that are likely to strongly 

influence the interannual variability of the three stages of tree-ring phenology from a climatic 

perspective.   

From the air surface temperature records, we derived indices of the duration of the 

cold season and the cumulative cooling during the winter. The former represents the period of 

dormancy (or partial dormancy) of trees, and the latter represents the coldness of the winter 

season. The cold winters in the high elevations of the Sierra Nevada induce periods of limited 

growth by photosynthetic dormancy with different trees species responding differently to low 

temperatures and freezing conditions (e.g. Royce and Barbour, 2001; Kelly and Goulden, 

2016; Stephenson, 1990).   

To derive the cumulative cooling index, it was necessary to identify the beginning and 

end of the winter in terms of cooling and warming onsets. The cooling onset was estimated as 

the first day the following two criteria are met: 1) the cumulative sum of daily average 

temperatures below 0oC since 1 October exceeds -50oC, and 2) daily average temperature 

below 0oC has persisted for at least six consecutive days.   The warming onset was 

conversely defined by adding the days with an average daily temperature that are greater than 

0oC since the day of the cooling onset and searching for the day in which the cumulative 
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positive temperature exceeded 50oC and a daily average temperature above 0oC has persisted 

for at least six days.     

The next set of indices is based on the simulated SWE time series. The total SWE 

during the water year is calculated as the total simulated water-year melt, or total snow-water 

equivalent (TotSWE).  The other two SWE indices represent the duration of the snowpack 

(SnowDur) and the duration of the melt period (MeltDur). To estimate these durations we 

define the timing of the SWE accumulation onset, melting onset, and snowpack depletion.  

SWE accumulation onset is assigned as the first day in which SWE exceeds 50 mm for at 

least fourteen consecutive days.  The melt onset is assigned as the first day following the 

onset of SWE accumulation that SWE declines for at least fourteen consecutive days.  The 

SWE depletion day is assigned as the first day following the melt onset with SWE lower than 

20 mm for at least fourteen consecutive days.  

Another set of indices is derived from the simulated soil water content time series. In 

the Sierra Nevada, the relatively long and often dry summers deplete the soil water content 

available for transpiration.  Transpiration and photosynthesis processes can sometimes be 

sustained during the dry summer by roots tapping into multi-year water storage in the deep 

soil and weathered bedrock (Klos et al. 2018; Bales et al., 2011 and 2018). Trees that tap into 

such multi-year water storage will likely to express low interannual variability in their ring 

widths, and so be excluded from the subset of trees used for the development of site 

chronologies.   

 The first soil-based index is the maximum soil water content (MaxSWC).  The length 

of the period of abundant soil moisture for uptake by trees is calculated as the number of days 

that soil water content exceeds 80% of the storage capacity during the wet duration (near-

saturation duration, or SWCgt80). We also selected as indices the duration of the available 

soil water for the trees (wet duration (WetDur)) and the duration of the dry season (DryDur).  

The soil water content wetting onset is identified as the first day after 1 October with 

fractional soil water content higher than 0.2 for at least six consecutive days.  The soil water 

content drying onset is identified as the first day following the depletion of the SWE that the 

soil water content is below 0.1 for at least six consecutive days.  The wet duration is the 

period between the soil water content wetting and the drying onsets. The dry duration is 

estimated as the time from the soil water content dry onset to the soil water content wetting 

onset of the following year. This index represents the duration of the summer water stress 
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from the perspective of the water content in the soil. It is expected that for drought-sensitive 

trees a short dry duration implies a relatively moist summer.   

The last index, evapotranspiration deficit (ETdef) is the difference of potential 

evapotranspiration and actual evapotranspiration during the near-saturation duration and 

represents the inability of the soil water to meet the evaporative demand. If actual 

evaporation meets demand (zero evapotranspiration deficit), trees are assumed to have 

optimal growth conditions from water and energy perspectives. While actual 

evapotranspiration reflects the biologically usable energy and water, the accrued 

evapotranspiration deficit indicates climatic stress to the trees due to unmet evaporative 

demand (e.g. Stephenson, 1998). 

The climatological indices just described are based on subjective criteria and were 

developed by exhaustive experimentation with various definitions to represent the seasonal 

transitions. The goal was to identify robust indices that are sufficiently sensitive to describe 

the spatial and temporal variability of hydroclimate in the study area.  In this study region, the 

variation of SWE, soil water content, and temperature are seasonal with low year-to-year 

(interannual) dependency because of long summers that completely deplete the snowpack and 

dry the soil.  Therefore, although the concept may be applicable to other regions, the 

formulation and definition of the indices should be tailored to the region of interest.     

 

2.6 Assessment of tree-ring hydroclimatic signal 

The strength of the hydroclimatic signal in the EW and LW chronologies was 

assessed by correlation analysis, principal components analysis (PCA) and multiple linear 

regression (MLR) using the climatological indices described in the previous section. 

Significant correlations of EW and LW with climatological indices were color-mapped to 

identify important relationships. Temporal change in strength of hydrologic signal was 

assessed by computing correlations for different time segments. To explore possible reasons 

for observed notable changes in signal strength, we checked for differences in the 

distributions of time series from one segment of the series to another with an F-test (e.g., 

Haan, 2002).  

Regression of EW and LW chronologies on principal components (PCs) of 

climatological indices was used to assess the percentage of tree-ring (EW and LW) variance 

that is explained by linear combinations of the highly inter-correlated annual climatological 

indices. PCs were calculated using a singular value decomposition methodology. General 
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descriptions of statistical methods for principal components analysis and regression can be 

found in standard statistics texts for the environmental sciences (e.g., Haan, 2002). We 

guarded against overfitting of regression models by not including additional predictors in the 

model if they did not lead to increasing adjusted R2 (Myers, 1990), and by applying leave-

one-out cross-validation (Michaelsen, 1987; Hastie et al., 2013) to check performance of 

models on data not used for calibration. Cross-validation skill was measured by the reduction 

of error statistic (RE; Fritts et al., 1990). 

 

3. Results and Discussion 

3.1. Covariation of tree-ring chronologies 
The cross-correlation coefficients of the four EW chronologies indicate a stronger association 

in EW between species at the same site (0.63 and 0.59 for CPR and TRS, respectively) than 

between sites (lower than 0.33) (Table 4).  This demonstrates the effect of microclimate 

differences between sites on the trees’ EW radial growth.  The cross-correlation coefficients 

of the adjusted LW among the four chronologies are much smaller than those for EW, and are 

statistically insignificant (α=0.05).   

EW covariation among the four chronologies is summarized by a time series plot of 

the four-chronology mean, with coded symbols at large departures from the mean (greater 

than 1-standard deviation) by individual chronologies (Figure 3a). The four-chronology mean 

varies considerably on interannual and decadal time scales, with a hint of increased 

variability in the second half of the 1900-2014 interval. Although the chronologies are highly 

intercorrelated (Table 4), individual chronologies depart greatly from the mean in some years. 

A noteworthy departure is a narrow earlywood in red fir at TRS (TRSA) in 1977 (Figure 3a). 

The winter of 1977 was characterized by record dry conditions across the western USA, 

associated with a persistent upper-level ridge positioned over the west coast (Namias, 1978). 

EW departures from the four-chronology mean as a function of sampling site (CPR vs 

TRS) are summarized in Figure 3b. Although EW variations at the two sites covary strongly, 

the site-average EW at each site departs from the 4-chronology average by at least one 

standard deviation in nine years (Figure 3b).  Periods of especially large site-specific 

departures in EW are the droughts of the 1930s and late 1980s to early 1990s. The former is 

expressed much more strongly at CPR and the latter at TRS.  
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EW departures of individual species from the site average for CPR (Figure 3c) and 

TRS (Figure 3d), underscore first of all the strong coherence in growth signal in different 

species at the same location. Large departures of the species from the site average are 

infrequent: three times --1907, 1916 and 1993 – since 1900 at CPR, and only once – 1930 – 

at TRS. The three outliers at CPR are all years in which the hemlock had narrow EW and the 

red fir had wider than normal EW. Species difference in the physiological response to some 

particular type of climate anomaly is the likely explanation. The aforementioned apparent 

shift to the higher variance of EW in the second half of the record is consistent across 

sampling sites and tree species. 

    

  LW is much less coherent than EW between species and sites than EW (Figure 4). 

This lack of coherence is reflected in the low correlations between series (Table 4), which 

suggests that individual LW series are not sensitive to the same climatological signal. 

Another contributing factor to the lack of LW coherency could be the larger spatial 

heterogeneity of the climate signals (e.g., soil water content) in the warm season than in the 

cool season due to the typical spottiness of convective warm-season precipitation.   

 

3.2. Evaluation of hydrologic model  
 

An extensive model evaluation and parameter tuning was carried out by comparing 

the SWC and SWE model simulations to in-situ observations.  In the comparison to follow, 

simulated soil water content is the soil water content fraction integrated over the entire soil 

column and observed soil water content is the average of the volumetric fraction measured at 

three depths. Thus, since the soil water content simulations attempt to represent the integrated 

water content of the entire hydrological active zone of the soil and the observations were 

taken at three discrete depths, the observed and simulated soil water content may not be 

expected to represent the same soil water content features.   Moreover, the observation 

stations are installed in forest clearings while the simulations attempt to represent soil water 

content available to the trees under the forest canopy.  

 

We used the Kling Gupta efficiency coefficient (KGE) as a goodness-of-fit measure to 

evaluate the model performance (Gupta et al., 2009; Kling et al. 2012).  
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𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 +  (𝛽 − 1)2 +  (𝛾 − 1)2       (2) 

 

where r is the Pearson correlation coefficient, 𝛽  is the bias ratio of the averages, and 𝛾 is the 

variability ratio of coefficients of variation of the simulated and observed time series. KGE 

values can range from −∞ to 1, such that KGE=1 corresponds to the simulation perfectly 

matching the observations and KGE> −0.41 indicates that the model performs better than a 

benchmark of mean SWE or SWC (Knoben et al., 2019). The integration of the correlation, 

bias, and variability terms in the KGE coefficient provides for a goodness-of-fit measure that 

respectively represents the model’s capacity to reproduce the timing, magnitude, and 

variability of the observed record. Reproducing these properties is a desired skill for a 

hydrological model.    

In Table 5 the KGE values of the SWE (1980-2014 water years) and soil water 

content (2004-2014 water years) are provided for the daily simulations and the daily 

anomalies.  The daily anomalies were calculated as the daily deviation from the multi-year 

daily mean. Since SWE and soil water content have a strong seasonal dependence, evaluation 

for the anomalies provides insight for the model’s ability to capture daily changes. Moreover, 

the evaluation of the anomalies is warranted in cases where the observations and simulations 

may not measure the exact same property, as the case herein for the soil water content.   

The KGE values for the SWE simulations indicate a relatively good skill for both the 

simulations of the daily values and the anomalies. The KGE values for the soil water content 

are lower than for the SWE. As the KGE is an integration of three measures, the timing (r) 

and variability (𝛾) terms of the soil water content are comparable to those of the SWE.  The 

reduction in the KGE values is mainly attributed to the increase in the bias ratio (𝛽). 

 

In Figure 5, the daily SWE (upper panels) and average daily fractional soil water 

content of the three sampling depths (lower panels) are compared with the simulations for 

October 2009 – September 2014.  While underestimating the observed SWE at CPR in 2013, 

the simulated SWE matches the observations well in all other years at both sites. The 

simulated soil water content (red dashed lines) at CPR and TRS fairly closely tracks observed 

soil water content (blue solid lines). Simulated soil water content shows an early wetting at 

both sites in 2013. This discrepancy is likely due to a series of precipitation events being 
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incorrectly assigned as rainfall instead of snowfall by the model. Since the SWE was fairly 

well simulated in 2014, the soil water content overestimation may be attributed to 

overestimation of precipitation, underestimation of observed soil water content, or both.  

To summarize, despite some discrepancies, the simulations effectively represent the 

interannual and intraannual variability of SWE and soil water content within a site and the 

spatial differences between the sites. We reiterate that these are the features that will be 

compared with the tree indices in the following sections.       

 

3.3. Site microclimate 

Despite their close proximity, sampling sites CPR and TRS have markedly different 

hydroclimatic regimes, as characterized by model input and output at 6-hour interval for wet 

water year 1983 and dry water year 2013 (Figure 6).    

CPR has a deeper snowpack that lasts about three months longer than the snowpack at 

TRS (Figure 6). The soil water content at CPR approaches saturation later in the summer 

when TRS is almost dried up.  Compared with TRS, CPR has more precipitation, higher 

actual evapotranspiration during the summer months and lower temperature.  The higher 

actual evapotranspiration at CPR during the summer months is because of the higher water 

availability as reflected by the higher soil water content.  It is interesting to point to the 

interplay between SWE and soil water content at these two sites.  The snow lasts longer at 

CPR and causes soil water content to peak later: in August-September for wet years and in 

May-June for dry years.  Soil water content at CPR slightly decreases during the winter and 

moisture accumulates during the transition to the spring, while at TRS the soil water content 

increases at the beginning of the winter.  This may be because precipitation events at the 

beginning of winter appear mostly as snow at high elevation and rainfall at low elevations.   

  

3.4 Tree-ring chronologies and climatological indices  
Exploratory analysis of the correlation between tree-ring variables and climate indices 

in a sliding 50-year window (not shown) indicated a strengthening of relationships from the 

first to second halves of the 1915-2014 overlap of datasets. Accordingly, we present the 

results separately for each half of the record. Cross-correlations between the EW and LW and 

the nine climatic indices in the year of ring formation and prior year for 1965-2014 are shown 

in Figure 7 for correlation coefficients significantly different from zero (α=0.05). 

Corresponding cross-correlations for the 1915-1964 analysis period are shown in Figure 8. A 
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strengthening of drought-related climate signal – particularly with climate of the previous 

year – in total-width tree-ring indices of red fir and mountain hemlock in the Sierra Nevada 

from the first to second halves of the 20th century has been reported by Dolanc et al. (2013).  

Our findings for EW are consistent with findings of Dolanc et al. (2013) for total width.  The 

weaker climate correlations in the earlier years may be attributed to either change in the 

quality of the climatic data or to change in the tree response to climate.  

In order to assess whether the differences in correlations between the two periods is 

associated with changes in the statistical properties of the tree chronologies, a two-sample F-

test was conducted to compare distributions of EW and LW tree chronologies during 1915-

1964 and 1965-2014. The null hypothesis of this test is that the chronologies for the two 

periods are independent samples that belong to the same parent distribution. The test assumes 

that these samples are normal distributions with equal means and unknown, but equal, 

variances.  

For all chronologies except the LW of red fir and hemlock at CPR, the null hypothesis 

cannot be rejected (α=0.05).  This result implies that no apparent statistical differences are 

detected in the distributions of the chronologies for the two periods (i.e. 1915-1964 and 1965-

2014), and argues for dismissing the observed increased spread in EW and LW chronologies 

toward more recent decades (Figures 3, 4) as an artifact of sampling variability.    

A similar F-test was applied to the CPR and TRS annual total precipitation and 

average temperature of the time series that were used as input to the hydrologic model. 

Except from the CPR precipitation, the null hypothesis for all the other annual time series 

was not rejected, which implies that the two sub-periods have the same parent population.  

However, within 1ox1o of the study site (39o - 40o N; 121o - 122o W) the number of gauges 

available for the interpolation changed sharply over time: about 10 during 1915-1935, 

gradually increasing during 1935-1955, reaching about 22 for 1955-2000, and gradually 

decreasing to 15 during 2001-2015. Data from the highest gauge (~2050 m) was available for 

only 1915-1918 and 1930-1959, whereas the second highest gauge is 100 m lower.  To 

handle the inconsistency in the data availability, Livneh et al., (2013) in their development of 

gridded dataset, selected gauges with at least 20 years of daily records.  In addition, the 

gridded precipitation values were scaled on a monthly basis to match the 1961–1990 and 

1981-2010 long-term means of data from the Parameter-Elevation Regressions on 

Independent Slopes Model (PRISM; Daly et al., 1994) for 1915-2011 and 2012-2014, 

respectively.  The inconsistency in gauge availability and the scaling that is based on recent 
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climatology can potentially introduce errors and spatial smoothing that reduce the expression 

of important climatological features, especially in a mountainous environment.    

Applying the F-test to the nine climatological indices at CPR and TRS led to the 

conclusion that for most indices the samples from the two sub-periods come from the same 

parent population.  The exceptions to this conclusion are total SWE, melt duration, maximum 

soil water content and near-saturation duration at CPR.  The changes in the distribution of 

these particular indices over time may be attributed to either climatic change or changes in 

the observational network. Studies have documented strong climate change since 1950 in the 

central Sierra Nevada in the form of earlier snowmelt, reflected for example in a downward 

trend in April 1 SWE (e.g., Mote et al., 2005). Our test results did not show any significant 

change in climatological indices at the TRS site. Perhaps these site-to-site differences in test 

results reflect some change in the observational network and its representation of the high 

elevation climate.   A comprehensive investigation of the reason for this change in 

association strength between the chronologies and the climatological indices is beyond the 

scope of the manuscript.  The climate-signal analysis for the remainder of the manuscript is 

restricted to the more recent part of the climate record, 1965-2014.  

The duration of the cold season was found to have a weak association with the tree 

indices; the only temperature-based index we selected for further analysis is the cumulative 

cooling index. EW of both red fir and mountain hemlock at CPR is negatively correlated with 

current-year dry duration in the 1965-2014 analysis period (Figure 7). This result implies that 

a shorter period of drought stress in the summer is associated with wider EW. A negative 

correlation is also seen for previous-year evapotranspiration deficit and the current-year melt 

duration in hemlock at CPR. Both species at CPR are positively correlated with the prior year 

total SWE, MeltDur, near-saturation duration, and wet duration. Hemlock at CPR is also 

positively correlated with the prior year maximum soil water content. These correlation 

patterns for EW of the two species at CPR indicate a moisture-limited growth (less moisture, 

less growth) with a strong lagged dependence on moisture conditions from the previous year.    

The strongest EW association with climatological indices is for white fir at TRS 

(Figure 7; TRSA). White fir EW here is positively correlated with the current-year total 

SWE, snowpack duration, melt duration, maximum soil water content, near-saturation 

duration, and wet duration.  In addition, it is positively correlated with the previous-year total 

SWE, melt duration, maximum soil water content, and near-saturation duration. EW at TRSA 

is also negatively correlated with evapotranspiration deficit during the current and previous 

years and duration of dry soils in the summer of the current year. These results suggest a 
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drought stress limitation to EW, as the “dry duration” as defined here is the interval of time of 

dry soil, and high evapotranspiration deficit would tend to be associated with dry soil. The 

correlation pattern for EW of ponderosa pine at TRS is similar to that of white fir, except that 

for ponderosa the correlations are stronger with the prior year than with the current year (total 

SWE, melt duration, maximum soil water content, near-saturation duration, and ETdef). 

Unlike white fir, ponderosa also has a stronger negative correlation with evapotranspiration 

deficit of the previous year than with evapotranspiration deficit of the current year.      

The strongest LW association with climatological indices is for red fir at CPR (Figure 

7; CPRA).  Red fir LW is positively correlated with the current-year total SWE, melt 

duration, maximum soil water content, near-saturation duration, and wet duration, and 

negatively correlated with cumulative cooling and the dry duration of the current year.  In 

contrast, hemlock at CPR (Figure 7; CPRT) has significant LW correlation with only the 

current-year available soil moisture (near-saturation duration).  At TRS, the strongest 

association with LW is seen for the TRSP with the current year indices.  LW of TRSA is 

positively correlated with total SWE, melt duration and maximum soil water content of the 

current year and total SWE, melt duration and near-saturation duration of the previous year.   

In summary, the EW and LW climate correlations show a striking shift in significant 

correlation from the previous year for EW to the current year for LW. This shift is most 

strongly seen for CPRA and TRSP and is a favorable result in suggesting that partial ring 

measurements may yield separate important information on snow-related climate variable at 

these sites. Positive response of EW to moisture of the previous year is consistent with total-

width studies of red fir and mountain hemlock elsewhere in the Sierra Nevada (Dolanc et al., 

2013). The results here also attest to moisture limitation as a primary driving force in EW and 

LW variation and emphasize that the signal can have a dramatically different manifestation in 

different species. The strong red fir LW signal for current-year moisture variable is promising 

for future dendrohydrological studies in the Sierra Nevada, as red fir is widely distributed at 

high elevations, but has until now not received much attention in climatic reconstruction 

studies.    

 

   3.5. Tree-ring variance explained by climatological Indices  

Regression on PCs of selected climatological indices was used to summarize the 

strength of the hydroclimatic signal in EW and LW chronologies. This analysis was 

conducted on the 1965-2014 segment of the time series. Based on the analysis presented 
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above we selected for the principal components analysis five indices (i.e. total SWE, melt 

duration, maximum soil water content, near-saturation duration, and evapotranspiration 

deficit) from the year of the ring growth.  Separate PCA analyses were run for the CPR and 

TRS sites, as each has different climatological data.  

More than 60% of the variance of the climatological indices is explained by the first 

PC and more than 85% of the variance is explained by the first three PCs (Figure 9).  

 

The PC loadings of the first three PCs for the two sites weight the importance of the 

original climatological indices to the PCs. PC1 at both sites is broadly a common moisture 

signal, with same-sign (negative) loadings on variable positively related to moisture, and an 

opposite-sign loading on evapotranspiration deficit. Each PC has a corresponding times 

series, such that a negative value of the time series for PC1, in this case, would correspond to 

wet conditions at both sites. PC loading patterns for higher-order PCs become increasingly 

difficult to interpret because each PC is constrained to be orthogonal to all lower-order PCs. 

Nevertheless, the loadings patterns generally reflect some contrast of above normal values in 

some indices and below normal in others. For example, PC2 at TRS is a contrast of maximum 

soil water content and near-saturation duration, which are the soil water content indices 

(Figure 10). This PC emphasizes years in which the maximum soil water content may be high 

(low) and yet the duration of the wet interval short (long). PC2 has a different pattern of 

loadings at the two sites. PC3 is actually quite similar at the two sites, as the signs of loading 

can be flipped (sign indeterminate) without altering the interpretation: except for SWCgt80%, 

negative PC3 loadings at CPR correspond to positive loadings at TRS.   

 

 Regression (MLR) of each EW and LW chronology on the PCs of the climatological 

indices at its site yields a regression R2 that summarizes the strength of the hydroclimatic 

signal. To allow for the possible lagged influence of climate, we included PCs from the year 

preceding growth as well as from the year of growth in the regression.  MLR was run 

separately for each of the four EW and LW chronologies using a common analysis period of 

1965-2014.  

We tested various combinations of predictors from a pool consisting of the first 3 

climate PCs in the year of the tree-ring growth and the preceding year (6 potential predictors) 

in MLR as seen in the following equation:   
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𝑌⏞ = 𝑎0 + 𝑎1𝑃𝐶1𝑡−1 + 𝑎2𝑃𝐶1𝑡0 + 𝑎3𝑃𝐶2𝑡−1 + 𝑎4𝑃𝐶2𝑡0 + 𝑎5𝑃𝐶3𝑡−1 + 𝑎6𝑃𝐶3𝑡0 (2) 

where 𝑌⏞ is the regression estimate of either EW or LW tree chronologies, ai are the regression 

MLR coefficients, the t-1 subscript of the PCs indicates the lagged one year PCs for the 

climatological indices from the year prior to the ring formation, and subscript t0 is for the 

year of the ring formation.. In estimating these MLR models, predictors were entered 

sequentially in the order presented in equation 2 until adjusted R2 failed to increase. The 

number of predictors selected for the various models for EW and LW ranges from one to six 

(Table 6; in parenthesis).  

Substitution of the PCs of climatological indices into the fitted regression equation 

yields predicted time series of EW and LW, which are compared with time series of observed 

EW and LW in Figure 11. Overall, the predicted chronologies track the observed 

chronologies well, with close synchrony at high and low frequencies for both EW and LW.  

Only the model for hemlock LW at site CPR (model CPRT) fails to be statistically significant 

(α=0.05) as measured by the overall F-statistic of regression.   

  

The explained variance of EW and LW by the climatological indices averages 42% 

for all models (Table 6, Figure 1). Explained variance is highest (58%) for EW at TRSA and 

lowest (10%) for LW at CPRT.  All models show some skill (RE>0), and models with 

R2>0.50 show only a small drop (0.07-0.13) from R2 to RE. "For comparison in Table 6, we 

also list (shaded) the corresponding percentage of variance explained in regression of 

chronologies on total water-year precipitation (P) and average temperature (T) for the year of 

growth and year preceding growth. These annual P&T values were derived from the time 

series that were used as input for the hydrologic model. The derivation of the MLR using 

P&T was conducted exactly as the MLR using the climatological indices as predictors. The 

same adjusted R2 method was also used to determine the number of predictors (out of 4) for 

the MLR on P&T.  As previously noted the P&T fluxes are implicitly related to the land 

surface processes that control the trees growth, while the climatological indices are an 

attempt to explicitly describe the timing of moisture and energy availability that control tree 

growth.  A good performance of the climatological indices in comparison to the P&T 

suggests that the hydrologic model describes processes that are relevant for the tree growth.   

Overall, a larger variance of the chronologies is explained by the climatological 

indices than the reference MLR using the annual precipitation and temperature, although the 
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single highest R2 is for the red fir LW model on P & T.  The variance explained by the 

climatic indices is similar to percentages reported in previous studies conducted in the Sierra 

Nevada looking at summer temperature and winter precipitation. (e.g.; Sprague, 2009; Yeh 

and Wensel, 2000; Bigelow et al. 2014; Dolanc et al. 2013).      

3.6 Uncertainty  

The EW and LW variance not explained by the MLR models represents “noise”, which 

includes imperfect specification of the climate inputs and the way in which those inputs are 

translated to cambial growth. We attempted to minimize the influence of non-climatic 

influences such as disturbance and competition for moisture and nutrients by strategic 

selection of the trees to be sampled. Perfect rendering of climate from tree rings is of course 

impossible because tree growth responds to some extent to factors other than climate. Some 

unexplained variance likely stems from the uncertainty associated with both the derivation of 

the tree chronologies and the climatic description of the sites.  

It is possible that signal strength could be increased by including additional trees in the 

site collections, or by processing the ring widths into site chronologies with different settings 

for statistical removal of growth trend, etc.  

The particular climate indices used in this study are necessarily depend on somewhat 

arbitrary definitions of seasonal offsets (Table 2).  Other definitions of offsets would lead to 

different time series of indices. The selected climatological indices themselves cannot be 

expected to be optimal for mirroring the way that tree growth might integrate climate inputs 

over time, as tree phenology would impose its own filter on the climate response. The high-

resolution hydrologic model used to derive indices also cannot be expected to exactly 

reproduce the actual climatological conditions (e.g., soil water content) at the sites. The 

uncertainty in the hydrologic model simulations is likely stem from the model input, model 

structure, and model parameters.  

An additional source of uncertainty stems from the choice of analysis methods.  

Regression and correlation by definition measure the strength of linear relationship. Tree 

radial growth is often controlled by environmental stresses that act as growth thresholds and 

changes in growth rate may be a nonlinear function of the climatological conditions 

(Vaganov et al., 2006).       
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4. Conclusions   
We have explored here the use of a high-resolution hydrologic model to identify snowpack- 

and soil water content- related climatological indices in earlywood and latewood 

measurements from tree rings of four conifer species at two sites in the central Sierra Nevada 

of California. These climatological indices aim to explicitly represent the land surface 

conditions and the timing of the available water and energy that control the tree growth. 

Precipitation and temperature, the primary input time series to the model, reflect climate 

variability at the tree-ring sites. The climatological indices proposed here attempt to describe 

the interaction of meteorological fluxes and the land surface, and to capture the accretion and 

depletion processes of the snowpack and soil water reservoirs that closely control tree 

growth.     

Annual climatological indices derived from output of the hydrologic model were 

found to be significantly related to time series of EW and LW indices of the four tree species 

sampled. Signals for both EW and LW reflect moisture-limited growth. Signal strength and 

seasonality differ strongly, however, across sites and species and between earlywood and 

latewood. Earlywood for the sites and species studied most strongly responds positively to 

hydroclimate of the water year preceding the year of tree-ring growth, and latewood responds 

mostly to conditions in the current year. This distinction is most strongly expressed in red fir, 

but also evident in other species. Earlywood width for all four species was correlated with 

total water-year snowmelt for the water year prior to the ring development. This lag in 

response is consistent with other recent dendroclimatological studies of total-width 

chronologies and should be considered in the design of future dendrohydrologic studies to 

reconstruct snowpack-related variables.  

We demonstrated that sub-annual width measurement (EW and LW) will be 

beneficial in future application of these tree species to dendrohydologic reconstruction in the 

Sierra. Multiple linear regression indicates on average 48% and 35% of the variance of 

earlywood width and latewood width, respectively, can be described by principal components 

of snowpack-related variables output by the hydrologic model. Important model-output 

variables include water-year total snowmelt, evapotranspiration deficit, maximum soil 

moisture, and near-saturation duration that likely represents the growth duration of the trees.  

Implications for future research are particularly encouraging for red fir, a species 

widely distributed in high snowpack areas of the Sierra Nevada, but previously little used in 

dendrohydrologic reconstruction. Red fir had not only one of the strongest signals for 

previous year’s soil moisture and snowpack in the earlywood width, but also the strongest 
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current year composite moisture signal in the latewood width, where the most important 

variables were the water-year total snowmelt and the number of days for which soil moisture 

exceeded 80% of capacity.  

The finding of a strengthening of hydroclimatic signal in the earlywood and latewood 

chronologies from the first to the last halves of the 1915-2014 instrumental period should be 

addressed for other tree-ring sites and with other basic climatological data. Despite the 

negative results of our difference-of-distributions F-test, time series plots suggest increased 

variability of earlywood and latewood chronologies in the second half of the instrumental 

record, and previous studies have documented sharp trends in snowmelt regimes in the region 

since the middle of the 20th century (e.g., Mote et al., 2005). Earlier snowmelt lower 

snowpack could favor the strengthening of the tree-ring response to moisture variables as the 

site becomes more moisture limiting to growth in the summer months.     

Finally, this study illustrates the potential of high-resolution hydrologic modeling for 

identifying linkages of hydrologic variables and processes to tree growth.  The modeling 

approach is more complicated than the simple correlation of tree-ring series with 

meteorological variables precipitation and temperature. The hydroclimatic series provided by 

the high-resolution model (e.g., SWE or soil water content at sub-monthly resolution) are 

more closely tied conceptually than precipitation and temperature to the moisture conditions 

sensed by the tree. Follow-up studies could explore the linkage of hydrologic models and 

mechanistic tree-growth models to better characterize hydroclimatic impacts on tree growth. 

Such integration will likely enable further exploration of the importance of spatial variability 

of the climatic variables and enable the development of climatological proxies at finer 

temporal and spatial scales.   
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Figure 1:  Map of the study region. Tree sites are marked by red dots. 
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Figure 2. A schematic example for the Truckee site showing the timing of the different onsets 

described in Table 2. 
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Figure 3. Time series plots summarizing covariation of EW chronologies as a function of species and 

site, 1900-2014. Series plotted as z-scores (zero mean, unit standard deviation) to facilitate comparison. 
Deviations exceeding one standard deviation flagged by coded markers; a) Average of the four 

chronologies, representing two sites and two species (blue line). b) The same four-chronology average 

(blue line) and individual site averages (CPR and TRS); c) The average chronology for site CPR and 

the two species (CPRT and CPRA) chronologies; and d) the average chronology at TRS and two species 

(TRSA and TRSP) chronologies. See Table 1 for definitions of series ids. 
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Figure 4: Time series plot of the mean of four LW chronologies, 1900-2014. Series plotted as z-scores 

(zero mean, unit standard deviation). Markers where species chronology differs from the average by 

more than one standard deviation.  
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Figure 5: Observed (blue solid line) and simulated (red dashed line) daily SWE (upper panels) and 
fractional daily soil water content (lower panels) at two tree-ring sites, water years 2010-2014. 

Simulated soil water content (SWC) of the entire soil column is compared with the average soil moisture 

measured at depths of 5, 20, and 50 cm deep.  
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Figure 6:  Six-hour resolution climate variation at Carpenter Ridge (blue) and Truckee Ranger Station 

(red) for wet and dry water years 1983 and 2013, respectively. The variables are (a) simulated Snow 

Water Equivalent (SWE, mm), (b) simulated Soil Water Content (SWC, fraction), (c) observed 
precipitation (mm/6-hour), (d) actual evapotranspiration (Actual ET, mm/day) and (e) mean daily 

temperature (oC).   
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Figure 7: Correlation coefficients between the EW (left) and LW (right) chronologies of the four tree 

species (1965-2014) and the climatic indices of the current year (Yo) and previous year (Y-1). The 

colored boxes indicate correlation coefficient values that are significantly different from zero (α=0.05). 
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Figure 8: As in Figure 6 but for 1915-1964. 

 

 

Figure 9: Cumulative variance explained by the principal components of 1965-2014 climatological 

indices at the two sites.   
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Figure 10: The loadings for the 5 selected indices of the first three PCs.   
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Figure 11: Observed (dashed blue) and predicted (red) standardized EW (left) and LW (right) ring-

width chronologies.  R-squared of the comparison between the chronologies and their estimate are 

indicated in the upper left. 
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Table 1: Tree-ring site information  

Code Site Name Elevation (m)   Latitude Longitude Species Common 

Name  

CPRA Carpenter Ridge  
(CPR)  

2490-2525 39.4172 -120.3121 Abies magnifica California red 
fir  

CPRT Carpenter Ridge 
(CPR) 

2490-2516 39.4167 -120.3110 Tsuga mertensiana mountain 
hemlock 

TRSA Truckee Ranger 
Station (TRS) 

1970-1985 39.2988  -120.1915 Abies concolor white fir 

TRSP Truckee Ranger 
Station (TRS) 

1970-1980 39.2981 -120.1917 Pinus ponderosa  ponderosa pine 

 

Table 2:  Definition of seasonal onsets.  

Seasonal Onsets 

[number of days since 1 October]  

Cooling onset The day that  cumulative negative average daily temperature is below -50 oC and 

continues to decline for at least 6 consecutive days   

Warming onset Following the day of cooling onset, the day when the cumulative positive average 

daily temperature exceeds 50 oC and keeps warming for at least 6 consecutive 

days 

SWE Accumulation 

Onset 

The first day that SWE is greater than 50 mm for at least 14 consecutive days   

SWE Melt Onset Following the SWE accumulation onset, the first day that SWE has declined for 

at least 14 consecutive days 

SWE Depletion  

Onset  

Following the melt onset the first day that SWE is lower than 20 mm for at least 

14 consecutive days 

SWC Wetting Onset The first day that the SWC is above 0.2 for at least 6 consecutive days 

SWC Drying Onset The first day following the SWE depletion onset that the SWC is below 0.1 for 6 

consecutive days 

 

Table 3: Summary of annual climatological indices derived from Hydrologic model output. Under 

“Notes”, for duration series, the minus sign refers to a difference in day numbers, with the ending 

event before the sign and the starting event before the marker (e.g., SWC wetting onset precedes SWC 

drying onset in the definition of wet duration).  

Abbreviation Short Definition Units Notes 

CumCool cumulative 

cooling  

oC Cumulative negative temperature during the 

cold season  

TotSWE total SWE mm The total accumulated melt over the water 

year, where SWE is “snow water equivalent” 

SnowDur snowpack 
duration 

days Interval from SWE depletion onset  to SWE 
accumulation onset 

MeltDur melt duration days The interval SWE depletion onset  to  SWE 

melt onset 

MaxSWC maximum  SWC fraction The highest soil water content (SWC) 
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SWCgt80 near-saturation 

duration 

days SWC greater than 80%. Represents days with 

high SWC during the near-saturation duration, 

which is the WetDur defined below  

WetDur wet duration days  SWC drying onset –  SWC wetting onset 

DryDur dry duration days The duration of the dry soil in the summer: 

SWC wetting onset of the following year – 

drying onset of the current year 

 ETdef evapotranspiration 

deficit 

mm Cumulative ET deficit (PET-AET) during the 

near-saturation duration as defined by the Wet 

Duration Index  (WetDur)  

 

 

Table 4: Cross-correlation matrix of the four EW (left) and LW (right) chronologies of the tree 

species.  

   EW      LW   

  CPRA CPRT TRSA TRSP   CPRA CPRT TRSA TRSP 

E
W

 

CPRA  0.63*  0.33*  0.17  

LW
 

CPRA  0.13 0.04 0.17  

CPRT   0.24  0.21 CPRT   0.14 0. 13  

TRSA    0.59*  TRSA    0.21  

TRSP     TRSP     

*Correlation Coefficient is significantly different from zero (α=0.05) 

 

 

Table 5: Kling Gupta Coefficients (KGE) of the daily simulations and anomalies. Analysis period 

(water years) is 1980-2014 for SWE and 2004-2014 for SWC. 

  Daily Simulations  Anomalies 

Snow Water 

Equivalent (SWE) 

Carpenter Ridge 0.86 0.73 

Truckee 0.9 0.68 

    

Soil Water Content 

(SWC) 

Carpenter Ridge 0.51 0.16 

Truckee 0.24 0.39 
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Table 6:  Percent of the explained variance (R2) of the four trees EW and LW chronologies by MLR, 
the number of PC predictors that were used in the MLR (in parenthesis), and the reduction of error 

index (RE). 

 

    CPRA CPRT TRSA TRSP Average 

Earlywood Width PC R2  0.37 (5) 0.57 (5) 0.58 (4) 0.4 (2) 0.48 

  RE  0.23 0.44 0.5 0.36 0.38 

 P&T R2  0.33 (4) 0.52 (3) 0.4 (2) 0.04 (1) 0.32 

  RE  0.21 0.5 0.33 0.03 0.27 

Latewood Width PC R2  0.56 (4) 0.1 (2) 0.31 (6) 0.43 (2) 0.35 

  RE  0.49 0.01 0.15 0.4 0.26 

 P&T R2  0.63 (4) 0.07 (1) 0.31 (3) 0.28 (1) 0.32 

  RE  0.43 0.03 0.09 0.24 0.2 

  

 


